Author: Baryshev, S.V.
Paper Title Page
TUPOW015 Experiment of High Resolution Field Emission Imaging in an rf Photocathode Gun 1772
 
  • J.H. Shao, H.B. Chen, J. Shi, X.W. Wu
    TUB, Beijing, People's Republic of China
  • S.P. Antipov, S.V. Baryshev, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, G. Ha, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • F.Y. Wang
    SLAC, Menlo Park, California, USA
 
  The first in situ high resolution field emission (FE) imaging experiment has been carried out on an L-band photocathode gun test stand at Argonne Wakefield Accelerator facility (AWA). Separated strong emitters have been observed to dominate the field emission. Field enhancement factor, beta, of small regions on the cathode has been measured with the imaging system. It is shown that most strong emitters overlaps with the high beta regions. The post surface examinations reveal the origins of ~75% strong emitters overlap with the spots where rf breakdown have occurred. Detailed results are presented in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW041 Single Crystal Diamond X-ray Lens Development 3643
 
  • S.P. Antipov, S.V. Baryshev, S. Baturin, R.A. Kostin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • T.C. Irving, A. Olga
    CSSRI, Chicago, USA
  • S. Stoupin
    ANL, Argonne, Ilinois, USA
 
  Funding: Phase I DOE SBIR
The next generation light sources such as diffraction-limited storage rings and high repetition rate free electron lasers (FELs) will generate x-ray beams with significantly increased peak and average brilliance. These future facilities will require x-ray optical components capable of handling large instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. In this paper we report on research and development of a single crystal diamond compound refractive lens. Diamond is the best material for high heat load applications. Moreover single crystal lens preserves coherence of the x-ray beam because scattering from grain boundaries, voids and impurities, typical for current beryllium lenses is minimized. A set of two-dimensional single crystal diamond lenses had been fabricated by fs-laser cutting and tested at Advanced Photon Source (Argonne).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)