Author: Anania, M.P.
Paper Title Page
WEPMY007 Plasma Density Profile Characterization for Resonant Plasma Wakefield Acceleration Experiment at SPARC_LAB 2554
 
  • F. Filippi
    INFN-Roma1, Rome, Italy
  • M.P. Anania, A. Biagioni, E. Chiadroni, M. Ferrario
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    INFN-Roma II, Roma, Italy
  • F. Filippi, A. Giribono, A. Mostacci, L. Palumbo
    University of Rome La Sapienza, Rome, Italy
  • F. Filippi, A. Giribono, A. Mostacci, L. Palumbo
    INFN-Roma, Roma, Italy
  • A. Giribono
    University of Rome "La Sapienza", Rome, Italy
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  New generation of particle accelerators is based on the excitation of large amplitude plasma waves driven by either electron or laser beams, named as Plasma Wakefield Accelerator (PWFA) and Laser Wakefield Accelerator (LWFA), respectively. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of externally injected high brightness electron beams through both schemes. In particular, in the so-called resonant PWFA a train of more than two driver electron bunches generated with the laser comb technique resonantly excites wakefields into the plasma, the last bunch (witness) is injected at the proper accelerating phase gaining energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The desired density can be achieved with a correct shaping of the capillary in which plasma is formed. The measurements of plasma density, as well as other plasma characteristics, can be performed with spectroscopic measurements of the plasma self emitted light. The measurement of density distribution for hydrogen filled capillaries is here reported.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)