

Current Status of PAL-XFEL Project

15 May 2013

Heung-Sik Kang On behalf of PAL-XFEL Project Team

IPAC 2013 Shanghai, China

Korean 4-th generation Light Source: PAL-XFEL

0.1-nm Hard X-ray 10-GeV XFEL

- **Project Period: 2011 ~ 2015**
- Total Budget: 400 M\$
- Accelerator Length: 1.1 km

THEFT PAR

- Wavelength
 - Soft x-ray: 10 nm ~ 1 nm
 - Hard X-ray: 1.0 ~ 0.1 nm
 - Extendable to 0.06 nm
- Undulator Beamline
 - : 3 Hard X-ray / 2 Soft X-ray lines

Pohang Light Source (3 GeV /400 mA)

Building		
Linac Hall		780
	1. Assembly	10
	2. Linac	710
	3. BTL	60
Undulator Hall		250
		80
XFEL Beamline	1. Front-end	20
	2. Experiment hall	60
Total Length [m]		1110

PAL-XFEL Site as of May 2, 2013

Status of PAL-XFEL project as of May 9

- Building and Infra-structure
 - Site preparation work was finished in early May 2013.
 - Building construction has started and will be completed by November 2014
- Accelerator system
 - Sub-system development is finished or underway
 - Ordering contract of major sub-system will be completed by September 2013.
 - New concept is being studied to be implemented into the Baseline : self-seeding and ISASE

Project Schedule

now

Building Construction Ceremony on 9 May 2013

Building Construction Ceremony on 9 May 2013

Microbunching Instability Workshop at Pohang on May 8-10, 2013

Parameters of PAL XFEL

- Machine Parameters
 - 10 GeV S-band linac / 0.2 nC / 0.4 mm-mrad / 60 Hz
 - Bunch current: > 3 kA at undulator
 - Photo-cathode RF-gun
 - Variable gap out-vacuum undulator: 5 m long and 7.2 mm min. gap
 - Aim to provide photon flux over 1 x 10+12 photons/pulse @ 0.1 nm
 - = 30 GW with 60 fs (15 GW from Ming-Xie formula)
 - = 60 GW with 30 fs → achieved by Self-seeding or ISASE

Features

- Three bunch compressor lattice
- Dechirper system using corrugated structure at the soft x-ray FEL line

Two Undulator Lines for Phase 1

Undulator Line	HX1	SX1
Wavelength [nm]	0.06 ~ 0.6	1 ~ 4.5
Beam Energy [GeV]	4 ~ 10	3.15 (2.55)
Wavelength Tuning	0.1 ~ 0.06 (Undulator Gap) 0.6 ~ 0.1 (Beam Energy)	3 ~ 1 (Undulator gap) 4.5 ~ 3 (Beam Energy)
Undulator Type	Planar	Planar + APPLE II
Undulator Period [cm]	2.44	3.4
Undulator Gap [mm]	7.2	8.3

Three-Bunch Compressor Lattice

- ✤ 3-BC lattice
 - Very flexible in control of bunch current and bunch length by changing the BC3 bend angle of each X-ray FEL Line.

* Photon beam length for 0.2 nC : 30 ~ 90 fs for hard X-ray

60 ~ 180 fs for soft X-ray

- Simultaneous and independent operation for Soft X-ray FEL beamline
- A dogleg to soft XFEL line is simple and no need to care about instability because of low beam current (600 A)
- Switching to Soft X-ray FEL line
 - Slow kicker for pulse by pulse switching for single bunch operation
 - Fast kicker for Bunch-by-bunch switching for two bunch operation (50 ns separation)

First bunch \rightarrow Hard X-ray, Second Bunch \rightarrow Soft X-ray

PAL-XFEL Layout

3-D model of Linac

- EU-XFEL undulator design
- 5-m long
- A space for 24 undulators

Undulator intersection

Development of Sub-system

Klystron modulator Undulator and phaseshifter Undulator chamber Injector Test Facility

Start-to-End Simulation for Hard X-ray Line

Current, energy spread, and emittance at the entrance of undulator

SASE: Time-dependent simulation

Tolerance Study for Linac RF parameters

	L1	X	L2	L3, L4	Current Variation [%]	Arrival time variation [fs]	Energy jitter
200 pC	0.1 deg 0.02 %	0.1 deg 0.04 %	0.1 deg 0.02%	0.5 deg 0.1 %		18.2	2.1 E-4
for SASE	0.05 deg 0.02 %	0.1 deg 0.04 %	0.05 deg 0.02%	0.5 deg 0.1 %	13	10.7	1.7 E-5
100 pC for Self- seeding	0.02 deg 0.02 %	0.05 deg 0.04 %	0.02 deg 0.02%	0.5 deg 0.1 %	13	26.0	4.6 E-5

RF stability requirement

- phase :
- amplitude :

0.03 degree 0.01 %

Klystron Beam Voltage Stability Requirement

- Because of a very short RF pulse length (a few mirco-second) of normal conducting Linac, the RF phase stability is determined by the pulse-to-pulse stability of klystron beam voltage.
- Klystron modulator should be stable enough to satisfy the requirement.

	S-band	X-band	
Frequency, GHz	2.856	11.424	
wavelength, m	0.10	0.03	
Klystron cavity distance, m	0.65	0.6	
Klstron voltage, kV	400	420	
RF phase stability requirement, degrees	0.03	0.05	
Klystron beam voltage stability, ppm	55.3	26.1	19

50-ppm Stability Inverter PS-type Modulator

- Collaborated with two local companies
- Both companies achieved the stability of **30 ppm**.

Prototype of Undulator

Gap control test

Field measurement

- EU-XFEL undulator design is benchmarked. MOU to use the EU-XFEL design is agreed on 2011 June btw. PAL and EU-XFEL.
- Variable gap out-vacuum
- Undulator period: 2.44 cm
- Minimum gap: 7.2 mm
- Length: 5 m

THPME026: Preliminary Results of the PAL- XFEL Prototype Undulator Magnetic Measurements

Field measurement data

Prototype of Phase Shifter

EU-XFEL type phase shifter (230 mm long)

Major Parameters of PAL-XFEL PS

Continuously tunable for 3.0-1.0 nm radiation at E=3.15 GeV, with 0.8 mm inter-undulator length Magnetic length : ~100 mm 7.2 mm Min gap : Max gap : > 100.0 mm ~6.300 T²mm³ Max Phase integral: Phase control accuracy : ±10 degree Gap Control accuracy : ± 20 um 20.000 (T) X 30 (H) X 50 (W) Full Magnet size Half Magnet size 10.995 (T) X 30 (H) X 50 (W) Magnet material Br > 1.26T, Hcj 1670 kA/m

A 100 mm long PM based Phase shifter is developed for PAL-XFEL with smaller phase integral.

THPME027: Design and Fabrication of Prototype Phase Shifter for PAL XFEL

Cross section

Fabrication procedure

- 1. Extrusion
 - controlled gas enviorment.
- 2. Correction
 - stretching in controlled gas env.
- 3. AFM polishing (if needed)
- 4. Precision machining
- 5. Chemical cleaning
- 6. Welding

Prototype of Undulator chamber

Parameter	Value
Undulator length , m	5.0
Undulator period , cm	2.44
Undulator gap , mm	7.2
Material	A6063-T5/T6
Aperture (V x H) , mm	5.2 x 11
Thickness , mm	$0.5 {\pm} 0.05$
Flatness	< 50
Clearance (pole to chamber), mm	0.5

Surface measurement result

- Surface roughness : < 150 nm
- Oxidation layer thickness : < 5 nm

Holes for Cu coil and LCW -

Injector Test Facility

WEPWA043: Construction of Injector Test Facility (ITF) for the PAL XFEL

Two candidate designs for the PAL-XFEL gun

PAL-XFEL baseline gun : dual-coupler gun with additional two-holes to reduce quadrupole field

PRST AB 14, 104203 (2011)

Emittance growth due to multipole transverse magnetic modes in an rf gun

Alternative gun design :

fully-symmetric coaxial coupler and cathode plug.

WEPWA040: Options for Operating Conditions of the PAL-XFEL Injector

Emittance Measurements

Projected emittance measurement with single quad scan

Transverse laser profile

FWHM : ~2 ps 0.20 0.15 0.10 0.05 $\Lambda M M M$ 0.00 -2 0 -3 -1 2 3 Delay Time (ps)

5

Repetition rate: 10 Hz

WEPWA041: First Beam Measurements at PAL-XFEL ITF

New Concept for increasing radiation power and narrow bandwidth

HARD X-RAY SELF-SEEDING

HXRSS @ PAL-XFEL

Collaborated with J. Wu in SLAC

Self-Seeding Simulation

With full length of 225 (red solid) m as compared to 130 m (red dashed), i .e., about 100 m left for other purpose

ISASE Scheme

- Self-seeding: narrow bandwidth, but too high intensity fluctuation (over 70%) very sensitive to beam energy jitter
- Improved SASE (iSASE) scheme: Pellegrini and J. Wu
 - introduces repeating delays of the electron beam respect to the radiation field
 - increase the cooperation length and generate a smaller bandwidth than SASE
 - Iess sensitive to beam energy jitter
 - a tapered undulator enables ultra-high peak power.

λ [nm]	Slippage/ 5-m	Total slippage (12 undulatos)	Total slippage
	undulator	in SASE mode	in ISASE mode
0.15	0.03 um	0.36 um	1.56 um

- Chicane (R56 = 2.4 μm) is 0.6 m long
- Only 2 m (0.4 m x 5) is increased

Collaborated with J. Wu in SLAC

Dechirper System

Start-to-End Simulation for Soft X-ray FEL Beamline

Simulation of longitudinal wake

b) Corrugated pipe with radius of 3 mm, L=15 m

BEG of Undulator with 200 k particles

One-meter long proto-type dechirper

Adjustable gap type using two parallel plates with corrugations

corrugation period : 0.5 mm corrugation depth : 0.6 mm corrugation gap : 0.3 mm Width of plate : 50 mm Gap of two plates : 1 ~ 30 mm.

- Collaborative R&D with SLAC (K. Bane, Z. Huang, G. Stupakov) and LBNL (P. Emma, Marco)
- Beam test at Injector Test Facility in July 2013

Acknowledgements

Thanks to...

- Kwang-Je Kim
- Zhirong Huang, Karl L.F. Bane, G. Stupakov, J. Wu, Patrick Krejcik
- Paul Emma
- S. Reiche, Bolko Beutner
- 📕 J. Pfluger
- 📕 Matsumoto, T. Inagaki, Y. Otake

Thank you for your attention

the state of the s