Generating Polarization Controllable FELs at Dalian Coherent Light Source

Tong Zhang1Haixiao Deng1Dong Wang1Zhentang Zhao1Weiqing Zhang2Guorong Wu2Dongxu Dai2Xueming Yang2

¹Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences, China ²Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, China

May 15, 2013

The 4th International Particle Accelerator Conference, Shanghai, China

Outline

Introduction

- 2 Dalian Coherent Light Source
 - Overview of DCLS
 - FEL simulations of DCLS

Control FEL Polarization FEL polarization control at DCLS

CPU Experiment at SDUV-FEL

4 Conclusions

Outline

Introduction

- 2 Dalian Coherent Light Source
- **3** Control FEL Polarization

4 Conclusions

Large Free-electron Lasers Worldwide

LCLS@SLAC (2009)

Control FEL Polarization

Conclusions

Large Free-electron Lasers Worldwide

LCLS@SLAC (2009)

SACLA@Spring-8 (2011)

Dalian Coherent Light Source

Control FEL Polarization

Large Free-electron Lasers Worldwide

LCLS@SLAC (2009)

SACLA@Spring-8 (2011)

FERMI@Elettra (2011)

Tong Zhang (tzhang@sinap.ac.cn)

Dalian Coherent Light Sourc

Control FEL Polarization

Conclusions

Large Free-electron Lasers Worldwide

LCLS@SLAC (2009)

SACLA@Spring-8 (2011)

FERMI@Elettra (2011)

European XFEL@Germany (2015)

Tong Zhang (tzhang@sinap.ac.cn)

Conclusions

Polarization Property of Lightsource

▷ pictures from wikipedia.

Introduction Dalian Coherent Light Source

Control FEL Polarization

Conclusions

Polarization Property of Lightsource

Any light field vector (\vec{k}) could be projected to two orthogonal direction, $\vec{k} = \vec{k_x} + \vec{k_y}$, i.e.

$$\vec{E} = e^{i(kz-\omega t)} \cdot \begin{pmatrix} E_x^0 e^{i\phi_x} \\ E_y^0 e^{i\phi_y} \end{pmatrix} \cdot (\hat{x}, \hat{y})$$

pictures from wikipedia. Tong Zhang (tzhang@sinap.ac.cn) Introduction Dalian Coherent Light Source

Control FEL Polarization

Conclusions

Polarization Property of Lightsource

Any light field vector (k) could be projected to two orthogonal direction, k = kx + ky, i.e.

$$\vec{E} = e^{i(kz-\omega t)} \cdot \begin{pmatrix} E_x^0 e^{i\phi_x} \\ E_y^0 e^{i\phi_y} \end{pmatrix} \cdot (\hat{x}, \hat{y})$$

Jone matrix:

$$\mathbb{J} = \left(\begin{array}{c} 1 \\ \frac{E_y^0}{E_x^0} e^{i(\phi_y - \phi_x)} \end{array} \right)$$

IPAC 2013, May 15th 3 / 15

pictures from wikipedia. Tong Zhang (tzhang@sinap.ac.cn)

Dalian Coherent Light Sour
0000

Conclusions

Polarization Property of Lightsource

 Any light field vector (k) could be projected to two orthogonal direction, k = kx + ky, i.e.

$$\vec{E} = e^{i(kz-\omega t)} \cdot \begin{pmatrix} E_x^0 e^{i\phi_x} \\ E_y^0 e^{i\phi_y} \end{pmatrix} \cdot (\hat{x}, \hat{y})$$

Jone matrix:

$$\mathbb{J} = \left(\begin{array}{c} 1 \\ \frac{E_y^0}{E_x^0} e^{i(\phi_y - \phi_x)} \end{array} \right)$$

• Efficient tool for probing the chiral compounds.

Dalian Coherent Light Source

Control FEL Polarization

Polarization Control Approaches

Elliptical Permanent Undulator (e.g. APPLE-II)

^{ightarrow} http://www.helmholtz-berlin.de

Control FEL Polarization

Polarization Control Approaches

Elliptical Permanent Undulator (e.g. APPLE-II)

- ▷ C. Spezzani, et al., Phys. Rev. Lett., 107 (2011) 084801.
- ▷ E. Allaria, et al., Nat.Photonics, **6** (2012) 699-704.

 $[\]triangleright$ http://www.helmholtz-berlin.de

Dalian Coherent Light Source

Control FEL Polarization

Polarization Control Approaches

Elliptical Permanent Undulator (e.g. APPLE-II)

Tong Zhang (tzhang@sinap.ac.cn)

Control FEL Polarization

Polarization Control Approaches

Elliptical Permanent Undulator (e.g. APPLE-II)

Outline

1 Introduction

- 2 Dalian Coherent Light Source
 - Overview of DCLS
 - FEL simulations of DCLS
- **3** Control FEL Polarization
- 4 Conclusions

 Sufficient photon flux in EUV regime is required to do photo-ionization efficiently;

Dalian Coherent Light Source

Control FEL Polarization

Conclusions

Overview of Dalian coherent light source

 Sufficient photon flux in EUV regime is required to do photo-ionization efficiently;

- Sufficient photon flux in EUV regime is required to do photo-ionization efficiently;
- Generating fully coherent powerful EUV radiation from free-electron laser facility;

- Sufficient photon flux in EUV regime is required to do photo-ionization efficiently;
- Generating fully coherent powerful EUV radiation from free-electron laser facility;
- High-Gain Harmonic Generation + Optical Parametric Amplification;

▷ R.A. Baumgartner, R.L. Byer, IEEE J Quantum Elect, 15 (1979) 432-444.

[▷] L.H. Yu, Phys Rev A, **44** (1991) 5178-5193.

- Sufficient photon flux in EUV regime is required to do photo-ionization efficiently;
- Generating fully coherent powerful EUV radiation from free-electron laser facility;
- High-Gain Harmonic Generation + Optical Parametric Amplification;
- Lasing at arbitrary wavelength between 50-150 nm, pulse energy $>100~\mu{\rm J}$, photon flux $10^{12}-10^{13}$ level;

[▷] L.H. Yu, Phys Rev A, 44 (1991) 5178-5193.

[▷] R.A. Baumgartner, R.L. Byer, IEEE J Quantum Elect, 15 (1979) 432-444.

- Sufficient photon flux in EUV regime is required to do photo-ionization efficiently;
- Generating fully coherent powerful EUV radiation from free-electron laser facility;
- High-Gain Harmonic Generation + Optical Parametric Amplification;
- \blacksquare Lasing at arbitrary wavelength between 50-150 nm, pulse energy $>100~\mu{\rm J}$, photon flux $10^{12}-10^{13}$ level;
- Dalian coherent light source, or DCLS has been approved and funded as the first FEL user facility in China.

[▷] L.H. Yu, Phys Rev A, 44 (1991) 5178-5193.

[▷] R.A. Baumgartner, R.L. Byer, IEEE J Quantum Elect, 15 (1979) 432-444.

Schematic Layout of DCLS

Schematic Layout of DCLS

- Electron beam: $E_b \leq 300 \text{ MeV}$, $\sigma_{\delta} = 0.01\%$, $\epsilon_n = 1 2 \,\mu\text{m}$, $I_{\text{pk}} = 300 \,\text{A}$;
- Seed Laser: $\lambda_{\text{seed}} = 240 360 \,\text{nm}$, $\tau_{\text{seed}} = 1.0 \,\text{ps}$;
- Undulator: $\lambda_m = 50 \text{ mm}$, $\lambda_r = 30 \text{ mm}$, $a_r = 0.3 1.6$;
- FEL radiation: $\lambda_{\text{FEL}} = 50 150 \,\text{nm}$, $W_{\text{FEL}} \ge 100 \,\mu\text{J}$;

FEL simulations of DCLS

FEL spectrum @ 100 nm

FEL simulations of DCLS (s2e jitter)

▷ H.X. Deng, et al., "Simulation studies on laser pulse stability for Dalian Coherent Light Source", arXiv:1303.6734 and DCLS CDR, 2013.

Tong Zhang (tzhang@sinap.ac.cn)

Outline

1 Introduction

2 Dalian Coherent Light Source

Control FEL Polarization FEL polarization control at DCLS CPU Experiment at SDUV-FEL

4 Conclusions

Conclusions

Simulation method

▷ M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1999.

Tong Zhang (tzhang@sinap.ac.cn)

Control FEL Polarizatio

Conclusions

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

▷ M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1999.

Control FEL Polarizatio

Conclusions

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \left(\begin{array}{c} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{array} \right)$$

▷ M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1999.

Control FEL Polarization

Conclusions

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \left(\begin{array}{c} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{array} \right)$$

$$\mathbb{P}_{tot} = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$
$$\mathbb{P}_{cir} = \frac{|\mathbb{S}_3|}{\mathbb{S}_0}$$

▷ M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1999.

Control FEL Polarizati

Conclusions

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \left(\begin{array}{c} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{array} \right)$$

$$\mathbb{P}_{tot} = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$
$$\mathbb{P}_{cir} = \frac{|\mathbb{S}_3|}{\mathbb{S}_0}$$

▷ M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1999.

Tong Zhang (tzhang@sinap.ac.cn)

ELEGANT

Control FEL Polarization

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \begin{pmatrix} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^{0} E_y^{0} \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^{0} E_y^{0} \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{pmatrix} \end{pmatrix}$$

$$\mathbb{P}_{tot} = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$
$$\mathbb{P}_{cir} = \frac{|\mathbb{S}_3|}{\mathbb{S}_0}$$

Control FEL Polarizatio

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \left(\begin{array}{c} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{array} \right)$$

$$\mathbb{P}_{tot} = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$
$$\mathbb{P}_{cir} = \frac{|\mathbb{S}_3|}{\mathbb{S}_0}$$

Control FEL Polarizatio

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \begin{pmatrix} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^{0} E_y^{0} \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^{0} E_y^{0} \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{pmatrix} \end{pmatrix}$$

$$\left\langle E_x^{02} \right\rangle - \left\langle E_y^{02} \right\rangle$$

$$\left\langle E_x^0 E_y^0 \cos \left(\phi_x \left(t\right) - \phi_y \left(t\right)\right) \right\rangle$$

$$\left\langle E_x^0 E_y^0 \sin \left(\phi_x \left(t\right) - \phi_y \left(t\right)\right) \right\rangle$$

$$\left\langle tot = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$

$$\left\langle tot = \frac{|\mathbb{S}_3|}{\mathbb{S}_0} \right\rangle$$

▷ M. Born, E. Wolf, Principles of Optics, Cambridge University Press, 1999.

P

 \mathbb{P}

Control FEL Polarization

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \begin{pmatrix} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^{0} E_y^{0} \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^{0} E_y^{0} \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{pmatrix}$$

$$\mathbb{P}_{tot} = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$
$$\mathbb{P}_{cir} = \frac{|\mathbb{S}_3|}{\mathbb{S}_0}$$

Control FEL Polarizatio

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \begin{pmatrix} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{pmatrix} \end{pmatrix}$$

$$\mathbb{P}_{tot} = \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0}$$
$$\mathbb{P}_{cir} = \frac{|\mathbb{S}_3|}{\mathbb{S}_0}$$

Control FEL Polarizatio

Simulation method

$$E_x(t) = E_x^0 \cos(k_s z - \omega_s t + \phi_x(t))$$

$$E_y(t) = E_y^0 \cos(k_s z - \omega_s t + \phi_y(t))$$

$$\vec{\mathbb{S}} = \begin{pmatrix} \left\langle E_x^{0^2} \right\rangle + \left\langle E_y^{0^2} \right\rangle \\ \left\langle E_x^{0^2} \right\rangle - \left\langle E_y^{0^2} \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \cos\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \\ 2 \left\langle E_x^0 E_y^0 \sin\left(\phi_x\left(t\right) - \phi_y\left(t\right)\right) \right\rangle \end{pmatrix} \end{pmatrix}$$

$$\begin{aligned} \mathbb{P}_{tot} &= \frac{\sqrt{\mathbb{S}_1^2 + \mathbb{S}_2^2 + \mathbb{S}_3^2}}{\mathbb{S}_0} \\ \mathbb{P}_{cir} &= \frac{|\mathbb{S}_3|}{\mathbb{S}_0} \end{aligned}$$

Dalian Coherent Light Source

Control FEL Polarizatio

Control FEL Polarization at DCLS

PCM configuration: CPU ($\lambda_u = 30 \text{ mm} \times 50$ for vertical/horizontal) or EPU ($\lambda_u = 30 \text{ mm} \times 100$);

▷ T. Zhang, et al., "FEL Polarization Control Studies on Dalian Coherent Light Source", Chinese Physics C, to be published, 2013.

Tong Zhang (tzhang@sinap.ac.cn)

- PCM configuration: CPU ($\lambda_u = 30 \text{ mm} \times 50$ for vertical/horizontal) or EPU ($\lambda_u = 30 \text{ mm} \times 100$);
- With DCLS main radiator line opening up, approaches CPU-I or EPU-I;

▷ T. Zhang, et al., "FEL Polarization Control Studies on Dalian Coherent Light Source", Chinese Physics C, to be published, 2013.

- PCM configuration: CPU ($\lambda_u = 30 \text{ mm} \times 50$ for vertical/horizontal) or EPU ($\lambda_u = 30 \text{ mm} \times 100$);
- With DCLS main radiator line opening up, approaches CPU-I or EPU-I;
 - CPU-I: Fast modulated polarization;
 - EPU-I: Good circularly polarized FELs.

[▷] T. Zhang, et al., "FEL Polarization Control Studies on Dalian Coherent Light Source", Chinese Physics C, to be published, 2013.

- PCM configuration: CPU ($\lambda_u = 30 \text{ mm} \times 50$ for vertical/horizontal) or EPU ($\lambda_u = 30 \text{ mm} \times 100$);
- With DCLS main radiator line opening up, approaches CPU-I or EPU-I;
 - **CPU-I**: Fast modulated polarization;
 - **EPU-I**: Good circularly polarized FELs.
- Append EPU module at the end of DCLS's main radiator line, approach EPU-II.

 $[\]triangleright$ T. Zhang, et al., "FEL Polarization Control Studies on Dalian Coherent Light Source", Chinese Physics C, to be published, 2013.

- PCM configuration: CPU ($\lambda_u = 30 \text{ mm} \times 50$ for vertical/horizontal) or EPU ($\lambda_u = 30 \text{ mm} \times 100$);
- With DCLS main radiator line opening up, approaches CPU-I or EPU-I;
 - CPU-I: Fast modulated polarization;
 - **EPU-I**: Good circularly polarized FELs.
- Append EPU module at the end of DCLS's main radiator line, approach EPU-II.
 - **EPU-III**: High power circularly polarized FELs.

 \triangleright T. Zhang, et al., "FEL Polarization Control Studies on Dalian Coherent Light Source", Chinese Physics C, to be published, 2013.

Tong Zhang (tzhang@sinap.ac.cn)

Dalian Coherent Light Source

Control FEL Polariza

Conclusions

		•			

Timeline of FEL experiments at SDUV-FEL

2009/04-08:	Linac commissioning
2009/09-12:	Light from SASE-FEL
2010/01-03:	Ready for Seeded FEL
2010/05:	Seeded FEL experiments start
2010/05-07:	HGHG signal
2010/05.22:	First coherent signal from EEHG micro-bunching
2010/10:	Slice energy spread measurement
2010/12:	HGHG saturation
2011/04:	First lasing of EEHG at 3rd harmonic
2011/07-08:	Two-staged cascaded-HGHG experiments begin
2011/08.13:	Coherent signal with spectra from 1st stage
2011/12:	Tunable HGHG and temporal coherence measurement
2012/04:	Coherent signal with spectra from 2nd stage
2012/05-now:	prepare/upgrade hardwares
2013/06-:	Higher harmonic EEHG (EEHG-10,20), polarization control, etc.

Some publications:

▷ D. Li, et al., "SASE FEL at SDUV-FEL", *in FEL'10*, WEPA02, 2010.

Z.T. Zhao, et al., "Progress in the SDUV-FEL and development of x-ray FELs in shanghai", in FEL'10, MOOBI1, 2010.

- ▷ C. Feng, et al., *Phys. Rev. ST Accel. Beams*, **14** (2011) 090701.
- ▷ Z.T. Zhao, et al., *Nat. Photonics*, **6** (2012) 360-363.
- ▷ B. Liu, et al., *Phys. Rev. ST Accel. Beams*, **16** (2013) 020704.

		•			

Control FEL Polarizat

Conclusions

Timeline of FEL experiments at SDUV-FEL

2009/04-08:	Linac commissioning
2009/09-12:	Light from SASE-FEL
2010/01-03:	Ready for Seeded FEL
2010/05:	Seeded FEL experiments start
2010/05-07:	HGHG signal
2010/05.22:	First coherent signal from EEHG micro-bunching
2010/10:	Slice energy spread measurement
2010/12:	HGHG saturation
2011/04:	First lasing of EEHG at 3rd harmonic
2011/07-08:	Two-staged cascaded-HGHG experiments begin
2011/08.13:	Coherent signal with spectra from 1st stage
2011/12:	Tunable HGHG and temporal coherence measurement
2012/04:	Coherent signal with spectra from 2nd stage
2012/05-now:	prepare/upgrade hardwares
2013/06-:	Higher harmonic EEHG (EEHG-10,20), polarization control, etc.

Some publications:

▷ D. Li, et al., "SASE FEL at SDUV-FEL", *in FEL'10*, WEPA02, 2010.

Z.T. Zhao, et al., "Progress in the SDUV-FEL and development of x-ray FELs in shanghai", in FEL'10, MOOBI1, 2010.

▷ C. Feng, et al., *Phys. Rev. ST Accel. Beams*, **14** (2011) 090701.

▷ Z.T. Zhao, et al., *Nat. Photonics*, **6** (2012) 360-363.

▷ B. Liu, et al., *Phys. Rev. ST Accel. Beams*, **16** (2013) 020704.

		•			

Control FEL Polarizat

Conclusions

Timeline of FEL experiments at SDUV-FEL

2009/04-08:	Linac commissioning
2009/09-12:	Light from SASE-FEL
2010/01-03:	Ready for Seeded FEL
2010/05:	Seeded FEL experiments start
2010/05-07:	HGHG signal
2010/05.22:	First coherent signal from EEHG micro-bunching
2010/10:	Slice energy spread measurement
2010/12:	HGHG saturation
2011/04:	First lasing of EEHG at 3rd harmonic
2011/07-08:	Two-staged cascaded-HGHG experiments begin
2011/08.13:	Coherent signal with spectra from 1st stage
2011/12:	Tunable HGHG and temporal coherence measurement
2012/04:	Coherent signal with spectra from 2nd stage
2012/05-now:	prepare/upgrade hardwares
2013/06-:	Higher harmonic EEHG (EEHG-10,20), polarization control, etc.

Some publications:

▷ D. Li, et al., "SASE FEL at SDUV-FEL", *in FEL'10*, WEPA02, 2010.

Z.T. Zhao, et al., "Progress in the SDUV-FEL and development of x-ray FELs in shanghai", in FEL'10, MOOBI1, 2010.

▷ C. Feng, et al., *Phys. Rev. ST Accel. Beams*, **14** (2011) 090701.

▷ Z.T. Zhao, et al., *Nat. Photonics*, **6** (2012) 360-363.

▷ B. Liu, et al., *Phys. Rev. ST Accel. Beams*, **16** (2013) 020704.

Dalian Coherent Light Source

Control FEL Polariza

Proof-of-principle of CPU at SDUV-FEL

[▷] T. Zhang, et al., Nucl. Instr. and Meth. A 680, 112 (2012).

Dalian Coherent Light Source

Control FEL Polariz

Conclusions

Proof-of-principle of CPU at SDUV-FEL

▷ T. Zhang, et al., Nucl. Instr. and Meth. A 680, 112 (2012).

▷ H. Deng, et al., in FEL'12 (TUPD10) and in these proceeding (TUPEA032).

Tong Zhang (tzhang@sinap.ac.cn)

Dalian Coherent Light Source

Control FEL Polariz

Conclusions

Proof-of-principle of CPU at SDUV-FEL

▷ T. Zhang, et al., Nucl. Instr. and Meth. A **680**, 112 (2012).

 \triangleright H. Deng, et al., in FEL'12 (TUPD10) and in these proceeding (TUPEA032).

Tong Zhang (tzhang@sinap.ac.cn)

Dalian Coherent Light Source

Control FEL Polariz

Proof-of-principle of CPU at SDUV-FEL

▷ T. Zhang, et al., Nucl. Instr. and Meth. A 680, 112 (2012).

▷ H. Deng, et al., in FEL'12 (TUPD10) and in these proceeding (TUPEA032).

Tong Zhang (tzhang@sinap.ac.cn)

Dalian Coherent Light Source

Control FEL Polariz

Proof-of-principle of CPU at SDUV-FEL

Outline

1 Introduction

- 2 Dalian Coherent Light Source
- **3** Control FEL Polarization

4 Conclusions

	Dalian Coherent Light Source 0000	Control FEL Polarization	
Conclusions			

 FEL radiation with polarization controllable is of much important to the users;

	0000	00000	
Conclusions			

- FEL radiation with polarization controllable is of much important to the users;
- Numerical code is developed for fair comparative study for crossed planar undulator and elliptical permanent undulator in the FEL polarization control;

Introduction	0000	Conclusions
Conclusions		

- FEL radiation with polarization controllable is of much important to the users;
- Numerical code is developed for fair comparative study for crossed planar undulator and elliptical permanent undulator in the FEL polarization control;
- It is promising to generate powerful coherent EUV radiations with flexible polarization control at Dalian coherent light source;

- FEL radiation with polarization controllable is of much important to the users;
- Numerical code is developed for fair comparative study for crossed planar undulator and elliptical permanent undulator in the FEL polarization control;
- It is promising to generate powerful coherent EUV radiations with flexible polarization control at Dalian coherent light source;
- Much more will be learnt from the polarization control experiments on-going at SDUV-FEL.

Acknowledgments

On behalf of the FEL physics group and other involved groups from SINAP and DICP, etc.

Thank you for your attention!