

Experimental Observations of a Multi-Stream in a Long Intense Beam

May 15, 2013

B. Beaudoin, S. Bernal, I. Haber, R.A. Kishek, T. Koeth

Institute for Research in Electronics & Applied Physics Energy Research Facility College Park, MD, USA

Outline

- 1. Motivation behind this work
- 2. The University of Maryland Electron Ring (UMER), a tool to study intense beams on a small scale using low energy electrons
- 3. Bunch wrapping and onset condition
 - Longitudinal erosion (debunching) of long beams due to space charge
 - PIC simulations of bunch wrapping
 - Calculation of the onset
 - Comparison between theory, measurements and simulations
- 4. Extending to multi-bunch trains (still within the long wavelength limit)

5. Conclude

Background

Longitudinal Bunch Erosion of Bunch Current

Longitudinal Bunch Erosion of Bunch Current

Longitudinal Space-Charge Physics

η = fill factor = injected pulse length / ring laptime

6 mA beam $\eta = 0.50$

η = fill factor = injected pulse length / ring laptime

6 mA beam $\eta = 0.50$

 $\Delta L > 4C$

Signature of the Onset in the Current Profiles

Condition required for the Onset

$$\Delta v = v_{head}(z, s) - v_{tail}(z, s) = 4c_s/3 - (2v_oC/3s)|\eta - 1|$$

Assume the filament separation is a c_s

$$\Delta \mathbf{v} = \mathbf{c}_{\mathrm{s}} = 4\mathbf{c}_{\mathrm{s}}/3 - (2\mathbf{v}_{o}C/3\,s_{onset})|\eta - 1|$$

s_{onset} = Onset of instability

$$s_{onset} = (2v_o C/c_s)|\eta - 1|$$
 9

Fill Factor and Current Dependence on the Onset

B.L. Beaudoin, R.A. Kishek, I. Haber, T.W. Koeth, submitted (2012). η

Incorporating Transverse Current Loss into the Simulation Model

Fill Factor Dependence on the Number of Filamentations

Extending to Multi-Short-Bunch Trains

Preliminary

Experimental Observation

 $s_{onset} = \frac{2v_oC}{c_s} |\eta - 1|$

For multiple bunch trains, C is the pulse to pulse spacing

$$C = (20ns)v_o = 1.167m$$
$$\eta = \frac{12.57ns}{197.39ns} = 0.0636$$
$$s_{onset} = 131.2m$$

Summary and Concluding Remarks

- Longitudinal space-charge causes the beam to wrap the machine several times.
- The onset of the instability occurs when the separation between the innermost filaments is a longitudinal wave velocity, c_s.
- Comparisons between theory, measurements and PIC simulations have shown good agreement.

Future Activities

- Measure growth rates and amplitudes as a function of line-charge density and fill factor
- Continue to work on multi-bunch trains to characterize parameter space for multiple bunches.
- Inject shorter and shorter bunches until we approach the short wavelength limit where $kr_w >> 1$

Fitting to Determine the Onset

Beam current 6.0 mA $\eta = 0.38$

To go from $exp^{-3.5}$ to exp^{0} , for this particular case, the growth is about ~3.5 µs or 17.7 turns.

