Status of the FAIR-facility

- Introduction to the FAIR project
- > The FAIR injectors
 - UNILAC development program, p-Linac
 - > SIS18 developments
- Challenges of the FAIR accelerators
 - Primary beam chain: SIS100
 - Super-FRS
 - Storage Rings

Civil construction

Facility for Antiproton and Ion Research - FAIR

FAIR physics programme

FAIR – Beam Parameters

- Primary Beam Intensity: x100–1000
- Secondary Beam Intensity :x 10000
- Heavy Ion Energy : x30
- Cooled pbar Beams (15 GeV)
- Intense Cooled Radioactive Beams
- > Variable duty cycle

Some SIS100 ion beam parameters:

Ion species : U^{28+} -ions (all p – U)

N: 5x10¹¹ /cycle (uranium)

Rep. rate: 0.5 Hz

Energy : 400 – 2715 MeV/u for heavy ions

ASSOCIATION

Pulse length : 30 – 90 ns

FAIR accelerator challenges

The FAIR injectors

Preparing the Injector Chain

UNILAC modifications and the HE-linac

- Ion source and beam transport upgrade^{daption}
- \blacktriangleright 4 Alvarez tanks, almost 40 years old \rightarrow exchange by modern IH-structures
- \blacktriangleright Charge state stripper technology \rightarrow higher charge states (high intensities)
- High intensity beam diagnostics

see also B. Schlitt et al., THPWO010 and L. Groening et al., TUPWA007

ASSOCIATION

Emittance transfer

p-Linac overview

SIS18 high current upgrade

Main tasks:

- pulse power conn. finished (12 Tm fast ramping)
- new injection system finished
- Dynamic vacuum:
 - * UHV upgrade
 - * ion catcher system, collimators
 - * optimized beam
 diagnostics (RGM)
- Theoretical Investigations
 (and machine Exp.)
- Bunch compression

ASSOCIATION

Dynamic Vacuum effect and collimation

Challenges of the FAIR accelerators

SIS100 synchrotron

Challenges of the SC-magnets development for SIS100

Fast ramped magnets (synchrotrons)

- Dynamic load and AC heat losses
 Bp= 100 Tm Bmax= 1.9 T dB/dt= 4 T/s
- > High field quality, low multipole strength

see also

ASSOCIATION

St. Sattler et al.,

SIS100

SIS18

R&D Goals

- Reduction of eddy / persistent current effects
- Guarantee of long term mechanical stability (≥ 2*10⁸ cycles) (mechanical stress →coil restraint)

Dipole vacuum chamber

Curved thin wall (0.3 mm) chamber

elliptical cross section
wall thickness: 0.3 mm (minimize AC-losses)
chamber reinforced by ribs

Eddy currents and according losses

Big problem:

Without cooling→ due to the fast magnet ramping eddy currents heat the chamber wall to temperatures >80K

The demand is due to outgasing <20 K

SIS100 quadrupole doublet modules

SIS100 sextupole → Dubna prototype

-(-

HELMHOLTZ

ASSOCIATION

O. Kester, IPAC2013, 14/05/2013

(prototype tested)

SIS100 cryo catcher

Magnet testing facilities

- Testing of SIS100 Dipoles and prototypes at GSI Testing of SIS100 quadrupole units at Dubna
- Testing of Super-FRS magnets at CERN

New series test facility at GSI \rightarrow 2 kW cryo plant, new building upgrade of test facility with a 20 kA power converter

preparation of string test area

HEBT system lay-out of transfer lines

Super-Fragment Separator at FAIR

Developments for the Super-FRS

Remote Handling Local Cryogenics Target **SC Multiplets** \$ /-Energy Branch Concrete Detector x-slit Working Platform Main-Separator Ladder 2 **SC** Dipoles Target 🗖 Detector Ladder 1 Iron Beam Exit Slit Dumps Concrete Pre-Separator Degrader 1 Pillow seal Pillow seal **Radiation Resistant Magnets** Beam a 2 m Iron Driver Accelerator HELMHOLTZ 6 - 5) ASSOCIATION O. Kester, IPAC2013, 14/05/2013

Super-FRS Superferric Multipletts

- 24 multiplets (7 m long)
- Quadrupol triplet
- ➢ up to 3 sextupoles and 1 steerer
- Octupole coils in short quadrupoles
- ➢ iron dominated, cold iron (up to 37 tons)
- warm beam pipe (38 cm inner diameter)

H. Müller et al., THPME005

Radiation Resistant Dipole

Prototype Production

The FAIR storage rings

Stacking of particles in the FAIR storage rings

MA- ring core cavities: Bunch compression in SIS100 and Fast bunch rotation in the CR

Gap voltage 40 kV Length 1 m Rotation time ~ 100 μs

see also S. Schäfer et al., THPEA003

SIS100 bunch after target

Challenges:

- Short bunch from SIS100 (50 ns)
 → bunch compression
- For stochastic cooling de-bunching required
- High voltage (200 kV) required for fast rotation
- Advanced low level rf system

Stochastic Cooling development

Challenges:

- > 2 GHz band (specs for power ampl. are ready)
- ➢ UHV conditions and 20 K temperature level
- Mounted on movable feedthroughs

 -> synchronous operation of lin. motor drives
- Numerical code under development

CR: fast stochastic cooling (1-2 GHz) of antiprotons (10 s) and RIBs (1.5 s)

FAIR civil construction

FAIR Site and Buildings

The FAIR project is moving forward

Status of preliminary works / construction works

		MARKA N	and the second of the	API Spendar	
	02 / 13	03 / 13	04 / 13	05 / 13	
relocation of water pipeline					
ground water measuring points					
inner site roads					
piling works					

Status of piling works

O. Kester, IPAC2013, 14/05/2013

ASSOCIATION

Civil construction is moving forward
 Master schedule of accelerator ready
 Procurement of components for SIS100, HEBT and CR started ~100 M€

Thanks for your attention

