

vSTORM Beamline Design

Ao Liu^{*} A. Bross, D. Neuffer, S.Y. Lee Fermilab, Indiana University

*www.frankliuao.com/research.he

Outline

- Introduction to vSTORM (v from STORed Muons)
- Design of vSTORM Transport Line
- Low Energy Muons from *vSTORM*
- vSTORM Muon Decay Ring Design
- Summary

 For the past decade, a lot of effort has been spent on v oscillation physics

$\mu^{\scriptscriptstyle +} \to e^{\scriptscriptstyle +} \nu_{_e} \overline{\nu}_{_\mu}$	$\mu^- ightarrow e^- u_\mu \overline{ u}_e$	
$\overline{ u}_{\mu} ightarrow \overline{ u}_{\mu}$	$\nu_{\mu} \rightarrow \nu_{\mu}$	disappearance
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$	appearance ("platinum" channel?)
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\tau}$	$\nu_{\mu} \rightarrow \nu_{\tau}$	appearance (atmospheric oscillation)
$\nu_{e} \rightarrow \nu_{e}$	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{e}$	disappearance
$\nu_{e} \rightarrow \nu_{\mu}$	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu}$	appearance: "golden" channel
$\nu_e \rightarrow \nu_\tau$	$\overline{\mathbf{v}}_{\mathbf{e}} \rightarrow \overline{\mathbf{v}}_{\mathbf{\tau}}$	appearance: "silver" channel

 $\mu^+ \rightarrow e^+ \nu_e \overline{\nu}_\mu$

 For the past decade, a lot of effort has been spent on v oscillation physics

8 channels accessible by vSTORM

$\overline{ u}_{\mu} \rightarrow \overline{ u}_{\mu}$	$\nu_{\mu} \rightarrow \nu_{\mu}$	disappearance			
$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$	$\nu_{\mu} \rightarrow \nu_{e}$ appearance ("platinum" channel?)			
		appearance (atmospheric oscillation)			
$\nu_{_{e}} \rightarrow \nu_{_{e}}$	$\overline{\nu}_{_{e}} \rightarrow \overline{\nu}_{_{e}}$	disappearance			
$\nu_{e} \rightarrow \nu_{\mu}$	$\overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu}$	appearance: "golden" channel			
V	- 7 V -	appearance: "silver" channel			

STORM Introduction-Motivation(Cont'd)

- 3.8 GeV/c muon decay ring (±10%) + near detector + far detector to study eV-scale v oscillations and search for sterile v.
 - $\mu^{+} \rightarrow e^{+} + v_{e} + \overline{v}_{\mu}, \ \mu^{-} \rightarrow e^{-} + v_{\mu} + \overline{v}_{e}$
 - Well understood neutrino flux + flavor
 - Provides short baseline neutrino oscillation study, cross section measurement, and works as a technology test bed (muon accelerator study, neutrino detector study, etc);
 - No new technology; Simple implementation; More affordable

- No new technology; Simple implementation; More affordable

vSTORM

Introduction-Facility

100 KW target station

- 60-120 GeV protons from Main injector;
- Magnetic horn to collect π;
- Target material: graphite;
- A total run exposure of 10²¹ protons over a period of 4-5 years
- Stochastic injection scheme
 - No full-aperture fast kicker or separate pion decay channel needed;
 - Initially proposed by David Neuffer(Fermilab, U.S.)

Introduction-Facility

Introduction-π Capture

- Introduction to vSTORM (v from STORed Muons)
- Design of vSTORM Transport Line
- Low Energy Muons from vSTORM
- vSTORM Muon Decay Ring Design
- Summary

VSTORM Transport Line Design Strategy

- Design the optics to
 - Achieve a beam size as small as possible by constraining β functions and dispersion;
 - Match Twiss parameters from the horn into the ring;
 - Use the smallest number of magnet families as possible.
- Optics + Simulation design tools
 - MADX(CERN), OptiM(V. Lebedev, Fermilab), apGA(myself)
 - G4Beamline(T. Roberts, Muons Inc.)

- Questions:
 - $-\pi$ decay in the straight:
 - 5 GeV/c π and 3.8 GeV/c μ have very different optics;
 - Is there enough space for magnets along the ring and transport?
- Answers:
 - Upper: Periodic $\beta_{x,y}$ for 3.8 GeV/c μ in the FODO cell.
 - Lower: Same FODO cells(lengths, gradients), 5 GeV/c π.

OptiM # Insert comment here Energy[MeV]=3695.8 Mass[MeV]=105.66

- Questions:
 - $-\pi$ decay in the straight:
 - 5 GeV/c π and 3.8 GeV/c μ have very different optics;
 - Is there enough space for magnets along the ring and transport?
- Answers:
 - Upper: Periodic $\beta_{x,y}$ for 3.8 GeV/c μ in the FODO cell.
 - Lower: Same FODO cells(lengths, gradients), 5 GeV/c π.

- Need 1:
 - As many π as possible survive in the decay straight before decay;
- Action 1:
 - Design the FODO cell with 2 sets of periodic Twiss (μ and π).
 - Use π parameters in transport optics matching.

- Need 1:
 - As many π as possible survive in the decay straight before decay;
- Action 1:
 - Design the FODO cell with 2 sets of periodic Twiss (μ and π).
 - Use π parameters in transport optics matching.

13-May-13

Ao Liu

Phase Space Plot of Initial Pions

Phase Space Plot of Muons at End of Decay Straight 0.02 Decay ON, End of injection 0.015 straight, 12% of the pions yield a 0.01 muon 0.005 X'(rad) 0 -0.005 -0.01 -0.015 -0.02 -300 -200 -100 0 100 200 300 X(mm)

Phase Space Plot of Muons at End of Decay Straight

Fermilab, Indiana University

Degrader

STORM

Transport Design - Summary

- Able to achieve 0.04 muon per pion at downstream side of the horn, within 3.8±10% GeV/c band.
 - Roughly 2 times the number vSTORM proposed in LOI paper;
 - Injection scheme can also be used to extract, both π and μ

STORM

Outline

- Introduction to vSTORM (v from STORed Muons)
- Design of vSTORM Transport Line
- Low Energy Muons from *vSTORM*
- vSTORM Muon Decay Ring Design
- Summary

Ao Liu Fermilab, Indiana University

13-May-13

Ao Liu

Ao Liu

Outline

- Introduction to vSTORM (v from STORed Muons)
- Design of vSTORM Transport Line
- Low Energy Muons from vSTORM
- vSTORM Muon Decay Ring Design
- Summary

Muon Decay Ring -- Goals

- The injection scenario has been shown to work well.
 Next step to design a ring which can accept the μ from π decay.
 - Large dispersion at injection; Require compact arcs;
 - First FODO ring to pursue such a large momentum acceptance (±10%) and phase space acceptance (2 mm).
 - Higher order chromatic effects include high-order dispersion and tune shift, which increases requirements for the arcs (more higher-order magnets) to correct them.
 - Relatively small number of turns required for µ decay(e.g. 450 meters circumference 85% decay in 100 turns)
- Racetrack FFAG is also under study;
 - Y. Mori, J.B. Lagrange (Kyoto U); J. Pasternak (Imperial College)

STORM

Ring Design Future

- Study effects of tune chromaticity and beta beat;
- Consider longer arc lengths with more space for magnets;
- Non-achromat FODO cells to be considered;
- Apply G4beamline for simulations of neutrino flux at near + far detector.

Fermilab Site Plan

- Injection scenario was proved to work by simulations from G4beamline; careful designs of decay straight, the BCS, and the transport line have been done.
- We expect the ring performance to be dramatically improved with further work.
- vSTORM is in progress Proposal will be on Fermilab Physics Advisory Committee table soon.

- Injection scenario was proved to v simulations from G4beamline; car of decay straight, the BCS, and th line have been done.
- We expect the ring performance to dramatically improved with further
- vSTORM is in progress Proposa Fermilab Physics Advisory Commission.

STORM

Backup

Ao Liu

13-May-13

Fermilab, Indiana University

44

Introduction - Target

Table I. π^+ yield/POT with 60 GeV/c protons, into 2 mm radian acceptance.

material	momentum (GeV/c)	$\pm 15\%$	$\pm 10\%$	$\pm 5\%$	target length (cm)	density (g/cm^3)
Carbon	3	0.085	0.056	0.028	27.3	3.52
Carbon	5	0.099	0.067	0.033	32.2	3.52
Inconel	3	0.131	0.087	0.044	19.2	8.43
Inconel	5	0.136	0.091	0.045	27.0	8.43
Tantalum	3	0.164	0.109	0.054	15.3	16.6
Tantalum	5	0.161	0.107	0.053	21.3	16.6
Gold	3	0.177	0.118	0.059	18.0	19.32
Gold	5	0.171	0.112	0.056	21.0	19.32

- Able to achieve ~ 0.11 π per POT in ± 10% bin;
- Medium/Heavy targets preferred;
- Courtesy of S. Striganov (Fermilab)

Introduction – π Production (Old) STORM

- Pion phase space distribution at 1 cm after target
- Horizontal: x (cm)

Ao Liu

Ao Liu

Ao Liu

Ao Liu

Ao Liu

Gold Target Deacay ON, End of injection straight muons, 19%

STORM

Ao Liu

Ao Liu

Ao Liu

Ao Liu

