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Introduction-Motivation(Cont’d) 

• 3.8 GeV/c muon decay ring (±10%) + near 

detector + far detector to study eV-scale ν 

oscillations and search for sterile ν. 

–                         , 

•       Well understood neutrino flux + flavor 

 

– Provides short baseline neutrino oscillation study, cross 

section measurement, and works as a technology test bed 

(muon accelerator study, neutrino detector study, etc); 

 

– No new technology; Simple implementation; More affordable 
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Introduction-Facility 

• 100 KW target station 
– 60-120 GeV protons from Main 

injector; 

– Magnetic horn to collect π; 

– Target material: graphite; 

• A total run exposure of 1021 

protons over a period of 4-5 

years 

• Stochastic injection scheme 

– No full-aperture fast kicker or 

separate pion decay channel 

needed; 

– Initially proposed by David 

Neuffer(Fermilab, U.S.) 
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Transport Line Design Strategy 

• Design the optics to  

– Achieve a beam size as small as possible by 

constraining β functions and dispersion; 

– Match Twiss parameters from the horn into the ring; 

– Use the smallest number of magnet families as 

possible. 

• Optics + Simulation design tools 

– MADX(CERN), OptiM(V. Lebedev, Fermilab), 

apGA(myself) 

– G4Beamline(T. Roberts, Muons Inc.) 
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Transport Design - Stochastic 

Injection 
• Right: Concept drawing; 

Bottom: Layout 

screenshot (White blocks- 

drift tubes, red-quads, 

blue-dipoles) 

• Circled section is beam 
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two beams 
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• Need 1: 
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Determine betas for FODO cell: 

• Larger β:  

 Smaller transverse 

angle acceptance, μ 

angles from π decay 

w.r.t parent π 

determined by energy; 

 Larger beam size 

• Smaller β -> Larger 

divergence: 

 ν’s not well oriented; 

 Lower divergence 

measurement accuracy; 
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Transport Design - Summary 

• Able to achieve 0.04 muon per pion at 

downstream side of the horn, within 3.8±10% 

GeV/c band. 

– Roughly 2 times the number νSTORM proposed in 

LOI paper; 

– Injection scheme can also be used to extract, both 

π and μ 
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Low Energy Muons 

13-May-13 

Ao Liu 

32 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 



Fermilab, Indiana University 

Low Energy Muons 

13-May-13 

Ao Liu 

33 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 



Fermilab, Indiana University 

Low Energy Muons 

13-May-13 

Ao Liu 

34 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

• 3480 mm Iron 

• Exponentially 

Modified 

Gaussian 

distribution or 

Log-normal 

distribution fit 

• 3480 mm Iron 

• Exponentially 

Modified 

Gaussian 

distribution or 

Log-normal 

distribution fit 



Fermilab, Indiana University 

Outline 

 

• Introduction to νSTORM (ν from STORed Muons) 

• Design of νSTORM Transport Line 

• Low Energy Muons from νSTORM 

• νSTORM Muon Decay Ring Design 

• Summary 

 

• Introduction to νSTORM (ν from STORed Muons) 

• Design of νSTORM Transport Line 

• Low Energy Muons from νSTORM 

• νSTORM Muon Decay Ring Design 

• Summary 

13-May-13 

Ao Liu 

35 



Fermilab, Indiana University 

Muon Decay Ring -- Goals 

• The injection scenario has been shown to work well. 
Next step – to design a ring which can accept the μ from 
π decay. 

– Large dispersion at injection; Require compact arcs; 

– First FODO ring to pursue such a large momentum 
acceptance (±10%) and phase space acceptance (2 mm). 

• Higher order chromatic effects include high-order dispersion and tune 
shift, which increases requirements for the arcs (more higher-order 
magnets) to correct them. 

– Relatively small number of turns required for μ decay(e.g. 
450 meters circumference – 85% decay in 100 turns) 

• Racetrack FFAG is also under study; 

– Y. Mori, J.B. Lagrange (Kyoto U); J. Pasternak (Imperial 
College) 
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correction; singe turn loss by ~10% 

100 turns loss ~40% without chromatic 

correction; singe turn loss by ~10% 

Injection 

point 

Injection 

point 
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Ring Design Future 

• Study effects of tune chromaticity and beta 

beat; 

• Consider longer arc lengths with more space for 

magnets; 

• Non-achromat FODO cells to be considered; 

• Apply G4beamline for simulations of neutrino 

flux at near + far detector. 

• Study effects of tune chromaticity and beta 

beat; 

• Consider longer arc lengths with more space for 

magnets; 

• Non-achromat FODO cells to be considered; 

• Apply G4beamline for simulations of neutrino 

flux at near + far detector. 
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Fermilab Site Plan 
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Conclusions 

• Injection scenario was proved to work by 

simulations from G4beamline; careful designs 

of decay straight, the BCS, and the transport 

line have been done. 

• We expect the ring performance to be 

dramatically improved with further work. 

• νSTORM is in progress – Proposal will be on 

Fermilab Physics Advisory Committee table 

soon. 

• Injection scenario was proved to work by 

simulations from G4beamline; careful designs 

of decay straight, the BCS, and the transport 

line have been done. 

• We expect the ring performance to be 

dramatically improved with further work. 

• νSTORM is in progress – Proposal will be on 

Fermilab Physics Advisory Committee table 

soon. 
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• Backup • Backup 
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• Able to achieve ~ 0.11 π per POT in ± 10% bin; 

• Medium/Heavy targets preferred; 

• Courtesy of S. Striganov (Fermilab) 

• Able to achieve ~ 0.11 π per POT in ± 10% bin; 

• Medium/Heavy targets preferred; 

• Courtesy of S. Striganov (Fermilab) 
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• Pion phase space distribution at 

1 cm after target 

• Vertical: x’ (rad) 

• Horizontal: x (cm) 

• Pion phase space distribution at 

1 cm after target 

• Vertical: x’ (rad) 

• Horizontal: x (cm) 
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3.8 GeV/c μ： βmax~ 30.2 m, βmin~ 23.3 m  3.8 GeV/c μ： βmax~ 30.2 m, βmin~ 23.3 m  



Fermilab, Indiana University 

Transport Design – 

Details(Cont’d) 

13-May-13 

Ao Liu 

48 

3.8 GeV/c μ： βmax~ 30.2 m, βmin~ 23.3 m  3.8 GeV/c μ： βmax~ 30.2 m, βmin~ 23.3 m  

5 GeV/c π： βmax~ 38.5 m, βmin~ 31.6 m  5 GeV/c π： βmax~ 38.5 m, βmin~ 31.6 m  
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Continued from 

decay straight 

FODO 

Continued from 

decay straight 

FODO 

At the end of beam 

combination section, 

separation ~ 48 cm 

At the end of beam 

combination section, 

separation ~ 48 cm 

3.8 GeV/c μ 3.8 GeV/c μ 
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Continued from 

decay straight 

FODO 

Continued from 

decay straight 

FODO 

At the end of beam 

combination section, 

separation ~ 48 cm 

At the end of beam 

combination section, 

separation ~ 48 cm 

3.8 GeV/c μ 3.8 GeV/c μ 
5 GeV/c π 5 GeV/c π 

• Different from μ’s 

• Match the transport to 

the end of this section 

• Injecting beam 

direction reversed 

• Different from μ’s 

• Match the transport to 

the end of this section 

• Injecting beam 

direction reversed 
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Continued from section 

above, match to 

downstream of horn 

Continued from section 

above, match to 

downstream of horn 

Reversed 

Injecting beam 

direction 

Reversed 

Injecting beam 

direction 
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Continued from section 

above, match to 

downstream of horn 

Continued from section 

above, match to 

downstream of horn 

Reversed 

Injecting beam 

direction 

Reversed 

Injecting beam 

direction 
Injecting beam 

direction 

Injecting beam 

direction 

Continued by 147 

meters long decay 

straight FODO cells 

(Not shown all) 

Continued by 147 

meters long decay 

straight FODO cells 

(Not shown all) 
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Gold Target 

Deacay OFF, End 

of injection 

straight, 54% 

Gold Target 

Deacay OFF, End 

of injection 

straight, 54% 
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Gold Target 

Deacay ON, End of 

injection straight 

muons, 19% 

Gold Target 

Deacay ON, End of 

injection straight 

muons, 19% 



Fermilab, Indiana University 

Transport Design – 

Simulation(Cont’d) 
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Decay OFF, End 

of injection 

straight, 35.5% 

Decay OFF, End 

of injection 

straight, 35.5% 
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Decay OFF, End 

of injection 

straight, 35.5% 

Decay OFF, End 

of injection 

straight, 35.5% 
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Decay OFF, End 

of injection 

straight, 35.5% 

Decay OFF, End 

of injection 

straight, 35.5% 
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Decay OFF, End 

of injection 

straight, 35.5% 

Decay OFF, End 

of injection 

straight, 35.5% 
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Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 
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Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

• 3480 mm Iron 

• Exponentially 

Modified 

Gaussian fit or 

Log-normal 

distribution 

• 3480 mm Iron 

• Exponentially 

Modified 

Gaussian fit or 

Log-normal 

distribution 
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Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

Assume μ within 5 ± 0.5 

GeV/c bin can be extracted 

• 3480 mm Iron 

• Exponentially 

Modified 

Gaussian fit or 

Log-normal 

distribution 

• 3480 mm Iron 

• Exponentially 

Modified 

Gaussian fit or 

Log-normal 

distribution 
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Higher-order Dispersion 

Correction 
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