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Abstract
The 3D spin-glass system in the external standing elec-

tromagnetic field is considered. It is shown on an exam-
ple of amorphous quartz, under the influence of a stand-
ing microwave field, at its certain parameters, superlattice
is created in the medium where difference in values of di-
electric constants of neighboring layers can be up to third
order. Note that this superlattice exists during the nanosec-
ond however it is sufficient for using it as a radiator for
generation of transition radiation by relativistic electrons.

INTRODUCTION
The formation and governing of periodically modulated

refractive index in media is a most important problem of
solid state physics and material science. First of all it is re-
lated to the possibility of developing compact UV or X-ray
Free-Electron Lasers (FEL) based on emission of transition
radiation (TR) (see for example [1]). Currently the follow-
ing two problems are discussed intensely:

1. A gas-plasma medium with periodically varied ioniza-
tion density [2–9],

2. A special periodical solid-state superlattice-like (SSL)
structures composed of layers with different refraction
indexes [10–20].

TR is generated due to the difference in frequency-
dependent dielectric constants (permittivity functions) of
adjacent layers (remember that the radiation power is
proportional to [εR1 (w) − εR2 (w)]

2, where εR1;2(w) =
Re[ε1;2(w)]) [21]. Therefore, the possibility of controlling
this difference by means of an external field is highly im-
portant. In other words, the problem here is to construct a
superlattice with difference in dielectric constants of neigh-
boring domains having the form [εR1 (w,g) − εR2 (w,g)]

2,
where g describes the controlling parameters, ε1(w,g) and
ε2(w,g) are dielectric permittivity functions in neighbor-
ing regions. According to theoretical and experimental
studies, the periodical structures may be formed in con-
densed matter by means of external electromagnetic or
acoustic fields [22–25].

This idea was recently realized in TR generation experi-
ments [26]. In particular, it was shown that at the passage
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of a beam of 20Mev electrons through amorphous silicon
dioxide a − SiO2 with a standing electromagnetic wave
(of 10GHz frequency) inside, anomalous high short-wave
radiation was produced. Preliminary studies explain this
high intensity radiation as a result of multiple passage of
the electron beam through interfaces between regions with
different permittivity functions. Theoretically the appear-
ance of 1D superlattice order in random media is explained
by the polarization of media due to the orientational relax-
ation of elastic dipoles in the direction of external electro-
magnetic field propagation [27].

So, the main objective of this work is a systematic in-
vestigation of relaxation processes and critical effects in
a − SiO2 compound type disordered 3D systems under
the action of external electromagnetic field that forms a
standing wave in the medium, and in particular, to prove
the possibility of formation of 1D periodic superlattice of
permittivity function in the scales of space-time periods of
standing wave.

FORMULATION OF THE PROBLEM
The starting point in our discussion will be the Clausius-

Mossotti relation for dielectric constant. It is known that in
isotropic media (as well as in crystals of cubic symmetry)
the dielectric constant is well described by the Clausius-
Mossotti equation [28–30]:

εs − 1

εs + 2
=

4π

3

∑

m

N0
mα0

m, (1)

where N0
m is the concentration of particles (electrons,

atoms, ions, molecules) with given m types of polarizabil-
ity and α0

m correspondingly are polarizability coefficients.
It follows from this formula that the static dielectric con-
stant εs depends on the polarizability properties of particles
as well as on their topological order. In the external field
the homogeneity and isotropy of the medium is often lost.
Then, it is expected that the formula (1) will be applicable
after slight generalization.

The object of our investigation are solid state dielectrics
of the amorphous silicon dioxide a−SiO2 type. According
to numerical ab initio simulations [31], the structure of this
type compound may be well described by the model of 3D
disordered spin system.

In particular the 3D spin system we can represent
as a 3D lattice with the lattice’s constant d0(T ) =
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{m0/ρ0(T )}1/3, where m0 is the molecule mass, ρ0 is the
density and T is the temperature. We will assume also,
that in each cell of this lattice there are only one randomly
distributed spin (roughly polarized molecule).

We will suppose that the media under the influence of
external standing electromagnetic field the electrical part
of which has a kind:

E(x;E0,Ω, λs, ϕ0) = E(x; g) = 2E0 sin(ϕ0) cos(kx),
(2)

where ϕ0 = Ωt0 and t0 are respectively the initial phase
and time, Ω is a wave frequency, k = 2π/λs and λs is the
wavelength, the symbol g shows the parameters of standing
wave (controlling parameters) (E0,Ω, λs, ϕ0).

Here follows a natural question, how does the dielectric
constant change on the scale of wavelength period and in
time interval Δt � Ω−1 ∼ 10−9sec, when the relaxation
time of molecular dipoles is τ ∼ 10−11 ÷ 10−12sec �
Ω−1. This question is important since the processes asso-
ciated with the Cerenkov and transition radiation produced
in media are much faster than the above time scale. Note,
that the time, during which a relativistic electron passes
the wavelength (λs ∼ 10−4cm) of standing wave and the
formation times of transition or Cherenkov photons in this
layer is less than 10−15sec. This time interval is essen-
tially less than the time, during which the standing wave is
steady-state. Since the wavelength is supposed to be much
larger than the inter-dipole distance λs � d0, the Clausius-
Mossotti relation is still true. In this case the main problem
is to calculate the polarizability coefficient related to orien-
tation effects.

Taking into account the external field, one can express
the polarization of matter at an arbitrary point as the macro-
scopic self-consistent relation:

P(r) =
∑

l
p (l − r) =

∑

m

nmαm(l − r)Eloc(l − r), (3)

where l ≡ l(lx, ly, lz) is 3D lattice vector, p is respectively
the dipole moment of molecule. The second equation in
(3) contributes to the value of dipole moment (spin). Note,
that the number of the carriers of given polarization type in
an elementary cell is nm ∼ (d0(T ))

−3, αm being coeffi-
cients of the polarizability of corresponding types with due
regard for external field and Eloc is the local field, i.e. the
effective field that induces the polarization at the site of an
individual molecule. The contribution of each effect to the
net dipole moment per molecule is linear, that is actually
verified by experiments. Under the action of external field
the polarization of different types arise in media. However,
simple analyzes shows that the values of polarizability co-
efficients due to orientation effects essentially exceed the
others.

Note that the coefficient of elastic orientational polariz-
ability in amorphous mediaαdip(l−r) is a random function
of cell location. This fact is due to random orientation of
local field strengths Eloc(l − r) with respect to the exter-
nal field E(x; g). Therefore, all terms in the right side of

(1) are basically known and well studied in literature (see,
e.g., [28–30]) except from those connected with the orien-
tation effects.

The orientation effects have a collective nature and are
characterized by average value of random sum

∑
l αdip(l−

r) (sum of random coefficients of orientational polarizabil-
ity).

Multiplying both sides of equation (3) on the field (2),
we find:

P(r,g)E(x,g) = −δU(r,g) =
∑

m

nm

[∑

l
αm(l − r)Eloc(l − r)

]
E(x; g), (4)

where −δU(r,g) describes the potential energy of amor-
phous matter in the external field. The statistical properties
of media in the direction of wave propagation will be con-
sidered later.

Taking into account (4), one can obtain the following ex-
pression for the part of potential energy of 3D spin system
which is related with the orientational effects of spins in the
external field:

−δUdip(r,g) =
∑

l
αdip(l − r)Eloc(l − r)E(x; g). (5)

Let us separate a layer with volume V = Lx × Ly × Lz

in the infinite crystal lattice, where Lx ∼ (λs) � d0(T )
and (Ly, Lz) → (∞,∞). It is easy to see that this volume
is filled with the infinite number of steric spin-chains with
length Lx.

An important problem is now to calculate the mean value
of the interaction potential between the spin layer and the
external field.

Formally the following expression may be written for
that:

−δUV (r,g) = −
∑

l⊥
δULx(l⊥|r,g), l⊥ ≡ l⊥(lx, ly),

−δULx(l⊥|r,g) =
∑

lx

αdip(l − r)Eloc(l − r)E(x; g), (6)

where −δULx(l⊥|r,g) is the interaction potential between
the 1D steric spin-chain and external field. We will drop
out calculating part and go to conclusion.

CONCLUDING REMARKS
In the present article a new microscopic approach has

been developed for studying the properties of stationary
dielectric constant and permittivity function in dielectric
media under the influence of external standing electromag-
netic field. The approach consists of the following two gen-
eral steps:

1. Generalization of the Clausius-Mossotti equation for
dielectric constant in the external standing electro-
magnetic wave;
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2. Generalization of the equation for dielectric permittiv-
ity function taking into account the previous results.

Mathematically the problem is solved as follows. The di-
electric medium in the external electromagnetic field is
modelled as a 3D spin glass system under the influence
of external field. Note that all general changes of proper-
ties of media take place in the wavelength scale of exter-
nal field space-time period. We have investigated in detail
the layer of medium that consisted of disordered 1D spin-
chains with the length of the order of external field’s wave-
length. Taking into account the fact that on infinite (x, y)
plane the distribution of spin-chains is isotropic we can use
the Birgoff ergodic hypothesis (see 6) and to reduce the
initial 3D spin-glass problem on a two conditionally sepa-
rated 1D problems. It means that we can investigate each
1D problem separately. However we must remember, that
at the solution of the second 1D problem the parameters of
a first 1D problem ought to be taken into account.

In the work we have constructed all formulas which are
necessary to allow for the contribution of orientational ef-
fects at calculation of stationary and frequency-depending
dielectric constants.

As was shown in result of catastrophe in C-M equation,
in the region of short wave-length, the difference between
permittivities of neighboring layers may be essentially big.

Last circumstance allows us in homogenous and the
isotropic dielectrics of spin-glasses type, artificially to cre-
ate a superlattice from different permittivitys the param-
eters of which it is possible to control by external fields
and use this structure for generation of extremely intensive
transition radiation.
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