
DATABASE FOR ACCELERATOR MODELING*
P. Chu#, Y. Zhang, FRIB, East Lansing, MI 48824, USA
D. Dohan, G. Shen, BNL, Long Island, NY 11973, USA

J. Wu, SLAC, Menlo Park, CA 94025, USA
H. Lv IHEP, Beijing, China

Abstract
A database for model data is design for the Facility for

Rare Isotope Beams (FRIB) Project. The database schema
design takes most general approach which is not limited
to FRIB models. Programmatically access to the database
can be done through a set of Application Programming
Interfaces (APIs). Initial data population demonstrates
that the database is suitable for XAL application
framework [1]. The model database is also part of
collaboration for complete database needs among various
data domains across an accelerator.

INTRODUCTION
High-level applications for accelerator control are often

based on physics models which require various data for
the calculation. FRIB physics application architecture
shown in Fig.1 as an example, starting from left-hand side
an offline modelling code with a given lattice computes a
model; both the computed model and lattice settings are
then saved in a lattice/model database which is part of a
global database; a model service then servers up model
data by either extracting offline model data from the
database or computing online machine model in real-time.
Physics applications, as clients of the model service, can
then carry out machine tuning based on the model data
provided by the service. With this software architecture
design, database and its data service is vital for physics
applications. This paper will report the lattice and model
database design and the progress for the associated data
services.

LATTICE AND MODEL DATABASE
DESIGN

A global database which covers many domains of an
accelerator including lattice, model, magnet
measurement, survey and alignment, and machine setting
save set, is under development. The global database
development is a collaborative effort among different
institutions. In order to distribute development effort
among several collaborative institutes, it is necessary to
divide the entire global database into domains. The lattice
and model database domain provides coverage for any
lattice and model data storage needs. Because the lattice
data and model data are tightly coupled, they are
developed as one single domain module. The lattice and
model database design is mainly according to the data

storage needs, usefulness for physics applications,
flexibility of various modelling tools and standardized
data access API. The global database design is based on
the Integrated Relational Model of Installed Systems
(IRMIS) [2].

Figure 1: FRIB physics application architecture.

Data Coverage for Lattice and Model Database

Figure 2: Lattice and model database schema.

Lattice and model database can hold 1) lattice data

which is a layout along the beamline plus a set of active

 __

*Work supported by the U.S. Department of Energy Office of Science
under Cooperative Agreement DE-SC0000661 and DE-AC02-
98CH10886 and Michigan State University, NSLS-II Project and CSNS
Project.
#chu@frib.msu.edu

Proceedings of IPAC2013, Shanghai, China THPEA059

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3273 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

device settings with optional diagnostic devices; and 2)
model data which is the result of physics simulation for a
particular beam running through a lattice. There are a
total of 19 tables for the lattice and model database which
can hold any number of lattices and model data sets, and
link to the installation database domain which may
contain controls information for devices.

The schema has a “gold lattice” table and a “gold
model” table to keep track of default lattices and models
for each beam-line and machine mode. The API signature
for accessing default lattice is based on physicists’ point
of view, e.g. getDefaultLatticeForbeamline(“a_line”) is
the API for obtaining the default lattice for a beamline.
For non-default lattices, a unique database set
identification (ID) number is required in the API.

Brief description for each database table is below:
 Beam Parameter: A link table between an element
and the beam properties such as Twiss Parameters at
the element.
 Beam Parameter Property: Individual beam
parameter for each element. This table is in property
name-and-value pair format so it can accommodate
any modelling tool’s outputs.
 Beamline Sequence: Typically an accelerator is
divided into multiple beamline segments for physics
tuning and modelling convenience reasons. This
table records the information for each individual
beamline segment.
 Beamline Sequence Lattice: A link table between the
Beamline Sequence table and the Lattice table.
 Element: Information for each modelling element
including misalignment.
 Element Install Device: A link table between the
lattice and model database domain, and the
installation/configuration database domain.
 Element Property: Element properties for each
element.
 Element Type: Definition for modelling element
types.
 Element Type Property: Common properties for a
given element type.
 Gold Lattice: Track records for current gold (or
default) lattices and previously tagged as gold
lattices.
 Gold Model: Track records for current gold (or
default) models and previously tagged as gold
lattices.
 Lattice: General information for a lattice.
 Machine Mode: Examples for machine mode are
“design”, “extant”, and “user-defined”.
 Model: General information for a model.
 Model Code: Modelling code and its algorithm
information.
 Model Geometry: Geometry information for a
model.
 Model Line: Information about the start and end
elements for a given model. A model line can
contain multiple beamline sequences.

 Particle Type: Particle species used in model
calculation.
 RF Gap: Specific information about RF accelerating
gaps. RF cavities are the modelling elements and
RF gaps are structures within an RF cavity.

So far, the lattice and model database schema can
accommodate all data needs. However, further
performance and storage efficiency optimization is
needed.

Properties Stored as Name/Value Pairs
The lattice and model database stores property name-

and-value pair in the database to accommodate various
modelling tools’ needs. The name/value pair approach is
in contrast to the conventional way of using the property’s
name as the database table column label. If a new
property is introduced or a property name is changed, one
has to modify the conventional database and consequently
the affecting data access API(s). Such tedious
maintenance can be avoided with the property name-and-
value pair approach. Also, property name/value can
accommodate various properties from different modelling
tools.

Data Link among Domains
Some of the data saved in other domains of the global

database are needed for physics model computation.
There are a couple of ways to link the data across
domains. First, using primary/foreign keys between
database tables can avoid data duplication. However, this
approach may result domains tightly bounded with data
dependency and cannot be deployed independently.
Alternatively, each domain maintains self-contained data
sets with software services as the interface for accessing
multiple domains to provide a complete set of joint query.
The latter is, however, at the price of potential data
duplication and inconsistency. It depends on the situation
whether using database table linkage or service interface.

DATA PREPARATION
As shown in Fig.1, typically lattice is designed with

offline simulation modelling tools. Each offline
modelling code has its own format and, therefore, very
difficult to write a universal data upload program for
various modelling codes.

Standard Spread Sheet for Lattice Data Upload
A complete set of design lattice can be uploaded with a

batch data upload program.
 Beamline Sequence – Breaking the entire accelerator
into segments suitable for physics modelling and
beam tuning purposes.
 Elements – A spread sheet contains a flat list of all
modelling elements with information such as names,
locations, effective lengths, and nominal settings.
 RF Gaps – RF accelerating gap data special for
XAL, e.g. gap electric-to-geometrical centre offset,
and end-cell indicator.

THPEA059 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

3274C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

 Beam Initial Conditions – Beam initial condition
(particle type, rest mass, charge, beam intensity,
phase space coordinates, and Twiss Parameters) for
each beamline segment.
 Name Mapping – Name mapping between physics
names and engineering names used for control
purpose.
 Device Types – Defining device types according to
site specific naming convention document.
 Device-model Types – Defining how to model a
given device type, e.g. dipole correctors can be
modeled as either thin lens or thick lens, device type
“DH” can be modeled as Bend in XAL or sector
bend in MAD.
 TTF Curves – Transit-time Factor (TTF) curves, a
polynomial curve fit program fits the curves and the
fitted polynomial coefficients are saved in database
with corresponding RF cavities.

LATTICE AND MODEL API
Typically, accessing data in a relational database is

done through Sequential Query Language (SQL).
However, it is not intuitive for physicists to use SQL.
Also, application software written in modern
programming language often uses object-oriented
approach. An object to relational mapping (ORM) API
can facilitate the database query. Java Persistence API
(JPA), which is included in the Java Enterprise Edition
Version 2 (J2EE), is chosen as the ORM tool. A set of
data API based on JPA is written for easy database access.
In addition, database applications and services can take
advantage of the data API. A proof-of-principle lattice
service based on Enterprise Java Bean (EJB) is
developed. The service is demonstrated with J2EE
Glassfish Application Server. Typical data API follows
the EJB conventions, for instance, the API for setting
Twiss Parameters for a given element looks like
model.setTwissFor(“an_element”, Twiss_Parameters)
where an_element is the element name and
Twiss_Parameter is a collection of Twiss Parameters.
Because the API is written in Java, it is compatible with
MATLAB and Python scripting languages with proper
configuration and additional modules.

Model Data Upload
For each modelling code, an “adapter” program is

needed to extract the model output and then to write the
data into the database via the data access APIs. For non-
Java modelling code, the easiest way is to write a run-
control program in scripting language such as Python
which is for starting a model run, monitoring the progress,
extracting the result files and uploading the model data to
the database.

Individual Lattice Data Upload and Extraction
In addition to the batch lattice data upload, individual

data can also be uploaded to or extracted from the
database via data access APIs. A web based user

interface (UI) is under development for end users to
update the database.

Modelling Tool Input File Generation
Modelling tool input files for lattice, element settings,

and initial beam conditions can be generated directly from
the database using the data access API set. Currently, a
program for generating XAL configuration files is
implemented. The XAL files generated by the program
are tested with the XAL Online Model.

Lattice Data Validation
Data uploaded to the database should be validated to

ensure data integrity. Typically the data check is done by
programmatically extracting the data from the database,
running physics simulation code against the extracted
data, and comparing the results with the original data.

Lattice and Model Data Service
Service-oriented architecture for high-level applications

can provide better performance and efficiency [4, 5].
Model data can be updated periodically as a running
service.

As mentioned above, proof-of-principle service based
on J2EE EJB convention has been developed. Glassfish
Web Application Server can host such services. The
services will be standard interface between lattice/model
data and client physics applications.

CONCLUSION
Lattice and model database as part of a global database

has been designed and implemented. Lattice data
template was defined for a standard data upload program.
As a first demonstration, XAL configuration files are
generated programmatically from the database. Lattice
and model data API set is written for easy data access.
Based on the data API, a proof-of-principle service is
developed. Near feature plan is to further develop
services and UI.

ACKNOWLEDGMENT
The authors would like to thanks other team members

involved in the global database development for their
valuable discussions and technical recommendation.

REFERENCES
[1] J. Galambos, et al, “XAL Application Programming

Structure”, p. 79, Proceedings of 2005 Particle
Accelerator Conference.

[2] http://irmis.sourceforge.net/
[3] http://poi.apache.org/
[4] P. Chu, et al, “FRIB High-Level Software

Architecture”, Proceedings of 2012 International
Particle Accelerator Conference.

[5] P. Chu, et al, “Online Physics Model Platform”,
Proceedings of 2012 International Particle
Accelerator Conference.

Proceedings of IPAC2013, Shanghai, China THPEA059

06 Instrumentation, Controls, Feedback and Operational Aspects

T04 Accelerator/Storage Ring Control Systems

ISBN 978-3-95450-122-9

3275 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

