
OPEN XAL STATUS REPORT 2013*

T. Pelaia II, Oak Ridge National Lab, Oak Ridge, TN 37831, USA

Abstract
XAL is the well established, accelerator physics high

level application programming framework developed for
and used at the Spallation Neutron Source in Oak Ridge
National Lab. Due to interest from other accelerator labs,
the Open XAL project was formed in 2010 to port XAL to
be more suitable for collaboration. The Open XAL
architecture along with the objectives, status and roadmap
of this effort are presented in this paper.

INTRODUCTION
The Open XAL [1] international collaboration has

formed out of the XAL [2] accelerator physics software
effort at the Spallation Neutron Source (SNS) in Oak
Ridge National Lab (ORNL). This collaboration currently
includes SNS, Chinese Spallation Neutron Source
(CSNS), European Spallation Source (ESS), Grand
Accélérateur National d’Ions Lourds (GANIL), TRIUMF
and Facility for Rare Isotope Beams (FRIB). The goal of
this project is to create a common software platform for
accelerator physics modeling, control and analysis. Since
XAL is well established at SNS for accelerator physics
software, it has attracted interest from other accelerator
facilities.

Development of XAL began at SNS around the year
2000 before commissioning the accelerator. Development
began at an intense pace, and now the source code is
relatively stable. Currently there are over five dozen
applications, four services and numerous scripts based on
XAL. Interest from collaborators at other facilities has
created an opportunity to make significant code
improvements while introducing flexibility to support
other accelerators.

The initial major milestones of the Open XAL project
are to create a simpler and more powerful project
architecture, implement an improved online model [3]
(not discussed here), fix all compiler warnings with the
strictest checks, develop an improved services
architecture, support the latest third party libraries and
port XAL code to Open XAL. To date, the only remaining
action item from the initial major milestones is to
complete the porting of XAL code to Open XAL.

COLLABORATION
Having been developed for SNS, XAL is very SNS

centric. Others began to see the value in XAL, and it was
adopted at other labs such as SLAC, CSNS and GANIL.
However, these were mostly based on an old 2007 branch

from SNS, and the source code rapidly diverged among
the various sites. In late 2009, ESS renewed interest in a
formal XAL collaboration with the goal of maintaining a
common accelerator software platform in the spirit of the
successful Experimental Physics and Industrial Control
System (EPICS) [4] collaboration.

The first Open XAL workshop [5] was held in May
2010 at SNS. A task list was generated and development
started. The old project named “xaldev” on Source Forge
was reconfigured for Open XAL. Since then, the new
project architecture was implemented, the new online
model was developed, the XAL core was migrated to
Open XAL with all compiler warnings addressed and the
new services architecture was implemented. Some
applications and services were ported.

The second Open XAL workshop [6] was held in
December 2012 at FRIB. This workshop formalized
commitments for Open XAL from the participating labs.
Action items were identified, assigned to tickets and
grouped into milestones. The project architecture was
reviewed and tweaked based on discussions. Monthly
online meetings are held to review the project status and
discuss issues.

PROJECT ARCHITECTURE
Open XAL introduces a cleaner, more powerful project

architecture. Like XAL, it is based on Apache Ant [7], but
the new directory layout allows for zero configuration
build rules and easier project navigation.

The new architecture has a hierarchical build system
(see Fig. 1) [8]. Build configuration files reference others
along a chain up to the top of the tree. Every
configuration setting has a default, and several support
customization. Build files reference the build
configuration files. Also, batch build targets (e.g. building
all applications) point down the tree.

root config.xml build.xml

root/apps common.xml build.xml

root/apps/demo build.xml

Figure 1: Build hierarchy flow.

Clean source code separation has been adopted which
allows for easier project navigation, maintenance free
build rules, leaner deployment and consistent
organization. Directories for applications, services, scripts
and the core are each rooted at the top of the project.

The core contains packages shared in common among
applications, services and scripts. The core directory

* This manuscript has been authored by UT-Battelle, LLC, under
Contract No. DE-AC05-00OR22725 with the U.S. Department of
Energy. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government
purposes.

MOPWO086 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1076C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

contains a build file, lib directory for external jars,
resources directory, source code directory and a test
directory. The test directory contains its own build file, lib
directory, resources directory and source code directory
and contains all unit test source code and supporting files
for testing the core. The test case builds are archived
separately from the core so the core is free of test case
code.

The applications directory contains a common
application build file, a batch build file and a subdirectory
for each application. An application’s directory contains
the application’s build file, resources directory, source
code directory and an optional lib directory for external
jars against which the application should be built. The
build file specifies the application ID and an import
statement pointing to the common application build file.
Optionally, it may also specify flags indicating whether
the application should be excluded from batch builds (e.g.
an application under development) or from installation
(e.g. an application not meant for deployment such as the
Virtual Accelerator). Applications are built against the
Open XAL application framework within the core and
their package is rooted at xal.app.appid where “appid” is
replaced with the application’s ID.

Services are organized the same way as for
applications, but get deployed to the services directory
instead of the apps directory. Services are built against the
services framework within the core. Additionally, each
service defines an interface and other supporting source
code within the core so that applications and other core
utilities have access to services without having to build
directly against the services.

The scripts directory includes a single batch build file
and a directory for each script. Since scripts don’t require
any processing, the build file simply allows for
deployment options.

SERVICES ARCHITECTURE
Open XAL introduces a new services framework. Like

its predecessor, it maintains a common services API that
abstracts the internal details of the registration, discovery
and messaging system. Registration and discovery are
based on the latest version of JmDNS (version 3.4.1) [9]
which involved a significant rewrite since its interface had
changed. The Apache XML-RPC [10] messaging protocol
of the predecessor was replaced by a homegrown JSON-
RPC [11] messaging implementation which is
significantly more powerful. Additional utilities make it
easier to implement robust client-server synchronization.

The JSON-RPC implementation supports a large
number of default types plus is easily extensible to
support additional custom types. Unlike XML-RPC,
JSON-RPC allows for methods that have no return type
and our implementation also supports oneway calls
flagged by a Java annotation. Oneway calls allow for
methods that are dispatched without waiting for or
expecting a return such as when shutting down a remote
service.

PORTING CODE
Porting code from XAL to Open XAL [12] is relatively

straight forward with most time spent on fixing compiler
warnings. Since XAL development began, several
versions of Java have been released introducing
significant changes to the language, some of which cause
compiler warnings when compiling the older code with
the strictest warnings enabled. The most common
compiler warnings are for use of raw types, unchecked
conversion, cast and lack of serialization ID for
serializable classes. Furthermore, Open XAL introduced
new package names, classes, programming interfaces and
eliminated obsolete features.

Table 1 shows package mappings that are commonly
encountered.

Table 1: XAL to Open XAL Package Mappings
XAL Open XAL

gov.sns.xal xal
gov.sns xal

gov.sns.apps xal.app

gov.sns.xal.model.scenario xal.sim.scenario

Table 2 shows class mappings that are commonly
encountered.

Table 2: XAL to Open XAL Class Mappings
XAL Open XAL

gov.sns.tools.apputils.iconlib
.IconLib

xal.tools.IconLib

gov.sns.ca.BatchGetRequest xal.ca.BatchGetValueRequest

Programming interface changes of note are in the Data
Adaptor and Model Scenario. In the Data Adaptor, the
childAdaptorIterator methods have been replaced by
corresponding childAdaptors methods which are easier to
use. The Model Scenario introduces an AlgorithmFactory
class to create algorithm instances of various types. This
factory mechanism replaces the XAL mechanism of
directly instantiating algorithms through their associated
constructors.

The application framework uses a menu definition
mechanism for specifying an application’s menu bar. The
original delimiter was an underscore, but XAL later
introduced an alternate dot notation. Open XAL drops
support for the older underscore notation and accepts only
the newer dot notation.

ROADMAP
Open XAL development began in 2010 following the

first Open XAL workshop. The initial work focused on
redesigning the project architecture based on lessons
learned and then forming a practical development plan to
allow migration from XAL to Open XAL. Several core
packages were identified for significant modification and
those changes are now complete. Remaining tasks are

Proceedings of IPAC2013, Shanghai, China MOPWO086

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-122-9

1077 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

primarily for porting common applications and services.
Table 3 shows the roadmap of Open XAL activities.

Table 3: Roadmap
Due Date Progress Task

Oct 31, 2010 100% Project Creation and Architecture
Dec 31, 2010 100% Website Development

Feb 15, 2011 100% Application Framework Migration

Apr 30, 2011 100% Design and Implement New Online
Model

Sep 30, 2011 100% Fix Compiler Lint Warnings

Feb 28, 2012 100% JSON Framework Development

Feb 28, 2012 100% Common Package Migration

Dec 31, 2012 100% Services Migration

Jun 30, 2013 50% Milestone 1 Tickets

Dec 31, 2013 5% Milestone 2 Tickets

After the December 2012 workshop, we embraced a
tracking system with tickets organized by milestones.
Milestone 1 tickets involve migration to Java 7, online
model additions and scan bug fixes. Milestone 2 tickets
include porting of common applications from XAL and
adding localization support.

SUMMARY
Open XAL has gained traction at several labs as a

standard for accelerator physics applications. It has a new
architecture and was designed for collaboration. Work
began in 2010 following the first workshop and
significant progress has been made. Porting of XAL
applications to Open XAL is a major task to be
completed.

XAL is actively used at SNS for production, and we as
well as other labs are committed to migrating to Open
XAL when it becomes production ready. We believe this
collaboration will benefit all parties.

ACKNOWLEDGEMENT
The Open XAL collaboration is thankful for the

contributions to these projects from many XAL and Open
XAL developers representing several labs over several
years.

REFERENCES
[1]	
 Open XAL Project; http://xaldev.sourceforge.net/
[2]	
 J. Galambos et al., “XAL Application Programming

Structure,” Proceedings of PAC 2005, Knoxville, TN
2005

[3]	
 C. Allen, “Physics Improvements in SNS XAL,”
Open XAL Workshop, December 2012; http://
x a l d e v . s o u r c e f o r g e . n e t / m e e t i n g s /
2012/12_XalPhysicsImprovementsVer3.pdf

[4]	
 EPICS; http://www.aps.anl.gov/epics/

[5]	
 First Open XAL Workshop, May 2010; http://
xaldev.sourceforge.net/meetings/2010/index.html

[6]	
 Second Open XAL Workshop, December 2012;
http://xaldev.sourceforge.net/meetings/2012/
index.html

[7]	
 Apache Ant; http://ant.apache.org

[8]	
 T. Pelaia, “Open XAL Status Report - 2012,” Open
XAL Workshop, December 2012; http://
xaldev.sourceforge.net/meetings/2012/10_Open
%20XAL%20Status.pdf

[9]	
 JmDNS Project; http://jmdns.sourceforge.net
[10]	
Apache XML-RPC; http://ws.apache.org/xmlrpc/
[11]	
JSON-RPC; http://json-rpc.org
[12]	
T. Pelaia, “Migration from XAL to Open XAL,”

Open XAL Workshop, December 2012; http://
xaldev.sourceforge.net/meetings/2012/17_Migration
%20to%20Open%20XAL.pdf

MOPWO086 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1078C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

