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Abstract 
We develop novel techniques for computing Courant-

Snyder (C-S) parameters of a charged-particle beam from 
profile measurement data. These methods have robust 
convergence properties by combining both deterministic 
and non-deterministic methods. The basic ideas is as 
follows: given a model of the beamline, in the zero space 
charge case it is possible to compute the C-S parameters 
directly from profile data using a deterministic, linear-
algebraic approach. For finite space charge we either a) 
iterate this deterministic solution or b) construct a smooth 
curve of these deterministic solutions starting from the 
zero-current solution and terminating at the finite-current 
case. This selects the finite-current solution connected to 
the zero-current C-S parameters. Both approaches avoid 
convergence issues associated with fully iterative, non-
deterministic methods. The details of the techniques are 
outlined and an example is presented using data taken 
from the SNS accelerator. 

INTRODUCTION 
The objective here is to develop a robust, accurate 

algorithm for computing C-S parameters from profile 
measurements with the aim of matching. To date C-S 
estimation has not successfully matched the SNS MEBT 
to the DTL using profile data. The current procedure used 
at SNS consists of a numerical solver driving a simulation 
engine; the solver searches for the C-S parameters that 
minimize error between simulation and measurements. 
We call this data fitting. The advantage is that it is easy to 
implement, the disadvantage is its weakly defined 
solution and convergence properties, especially with 
space charge.  

Our new techniques are motivated by direct methods 
for computing C-S parameters in the zero-current case, 
see for example [1]. The least-square solution is computed 
directly from measurements, without minimization. With 
space charge this direct method serves as the engine for a 
fixed-point iteration scheme. A function is defined whose 
fixed point is the finite-current solution. The fixed-point 
method then drives a continuation method that constructs 
a curve of solutions from zero-current to finite-current.  

Background 
We briefly outline the problem domain primarily to 

establish the notation. For brevity we focus on horizontal 
phase space with coordinates 𝐱 ≜ 𝑥, 𝑥! ∈ ℝ!.  Results 
generalize to the 6D case. Let ∙ ∶ 𝐿! ℝ! → ℝ be the 

moment operator with respect to the beam distribution. 
For ellipsoidally symmetric beams the second-order 
moments { 𝑥! , 𝑥𝑥! , 𝑥!" } and the C-S parameters 
{𝛼,𝛽, 𝜖} are equivalent representations [2]. The moments 
are elements of the symmetric covariance matrix 𝛔  

𝛔 ≜ 𝐱 ∙ 𝐱! = 𝑥! 𝑥𝑥!

𝑥𝑥! 𝑥!"
,                                (1) 

where det𝛔 = 𝜖!, 𝑥! = 𝛽𝜖, and   𝑥𝑥! = −𝛼𝜖. We 
consider only discrete locations 𝑠!   along the beamline 
and the coordinates {𝐱!} at those locations. Propagation is 
modeled via transfer matrices {𝚽!} where 𝐱!!! = 𝚽!𝐱!. 
Matrix multiplication and the moment operator commute, 
thus the covariance matrix propagates according to 
𝛔!!! = 𝚽!𝛔!𝚽!

!, verified by propagating Eq. (1).  
For conciseness we make several definitions. First is 

the operator 𝑇! given by the action 

𝛔!!! = 𝑇! 𝛔! ≜ 𝚽!⋯𝚽! 𝛔! 𝚽!⋯𝚽!
! ,                (2) 

that is, 𝑇! propagates 𝛔! to 𝛔!!!. Now let Sym ℝ!×!  be 
the subspace of symmetric matrices in ℝ!×!.  The 
following elements form a basis for Sym ℝ!×! : 

𝐞! ≜
1 0
0 0 ,        𝐞! ≜

0 1
1 0 ,        𝐞! ≜

0 0
0 1 ,            (3) 

from which Eq. (1) can be expressed 𝛔 = 𝑥! 𝐞! +
𝑥𝑥! 𝐞! + 𝑥!" 𝐞!. Next, define the coordinate projection 

operator 𝜋! on Sym ℝ!×! , which selects the ith 
coordinate of the basis {𝐞!}, specifically,   

𝜋! 𝜎!𝐞! + 𝜎!𝐞! + 𝜎!𝐞! ≜ 𝜎!   .                                      (4) 

For example, 𝜋! 𝛔 = ⟨𝑥!⟩. Finally, it can be shown from 
the mapping 𝝈 ↦ 𝑥! , 𝑥𝑥! , 𝑥!"  that Sym ℝ!×!   ≅ 
ℝ! so 𝛔 has equivalent representations in either space. 
When it is necessary to enforce 𝛔 ∈ ℝ!, we denote it by 
𝛔. For more information on this material, see [2] and [3]. 

COURANT-SNYDER ESTIMATION 
The observables for the C-S estimation problem are the 

beam sizes 𝑥!!  at the N positions 𝑠! !!!
!  along the 

beamline. The beam sizes are obtained from 
measurements, for example, wire scanner data. Using the 
observables the objective is to estimate the beam state 𝛔 
at an arbitrary location along the beamline. Pick such a 
location 𝑠! and denote the unknown beam state as 𝛔!. The 
{𝑇!} operators provide the model relations 𝑥!!!! = 𝜋! ∘
𝑇! 𝛔! , 𝑛 = 0,… ,𝑁 − 1 that link the known beam sizes 

 ____________________________________________  

*Work supported by ORNL/SNS managed by UT-Battelle, LLC, for 
the U.S. Department of Energy under contract DE-AC05-00OR22725 
#Corresponding author allenck@ornl.gov  

 

Proceedings of IPAC2013, Shanghai, China MOPWO085

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-122-9

1073 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)



to the unknown beam state 𝝈! at 𝑠!. Expressing 𝛔! as 
𝑥!! 𝐞! + 𝑥!𝑥!! 𝐞! + 𝑥!!" 𝐞! facilitates the following:  

𝑥!!
⋮
𝑥!!

=
𝜋! ∘ 𝑇! 𝐞! ⋯ 𝜋! ∘ 𝑇! 𝐞!

⋮ ⋱ ⋮
𝜋! ∘ 𝑇!!! 𝐞! ⋯ 𝜋! ∘ 𝑇!!! 𝐞!

𝑥!!

𝑥!𝑥!!

𝑥!!
!

, 

which we write more compactly in matrix-vector notation 

𝐦 = 𝛀𝛔!  ,                                                                                  (5) 

where 𝐦 ≜ 𝑥!! ,… , 𝑥!! ! is the N-vector of measured 
beam sizes and 𝛀 is the 𝑁×3 observation matrix with 
elements 𝛀 !" ≜ 𝜋! ∘ 𝑇!!!(𝐞!). Only for the case N = 3 is 
there a potentially unique solution for the above. More 
typical is the situation N > 3 which we consider 
exclusively. Since the image of 𝛀 does not cover all of 
ℝ!, there are no true solutions in this case.  However, we 
can define the least-squares solution 𝛔!∗  as 

𝛔!∗ ≜ 𝛀!𝛀 !!𝛀!𝐦  ,                                                  (6) 

so named because it minimizes completely the residual 
error 𝐦 − 𝛀𝛔! ! where ∙ ! is the Lebesgue 2-norm. 
Specifically, 𝛔!∗ = argmin𝛔 𝐦 − 𝛀𝛔 !. If 𝛀 has full 
rank then 𝛔!∗  is well defined. The rank depends upon the 
model and the measurement setup. Thus, for a well-
designed experiment with accurate transfer matrix model 
Eq. (6) is a reasonable estimate of the C-S parameters at 
𝑠! whenever space charge forces are insignificant. 

Estimation with Space Charge 
When space charge is significant the transfer matrices 

{𝚽!} depend upon the second-order moments {𝛔!}. Since 
the transfer matrices are the used to compute 𝛀, solution 
relation (6) is transcendental. In general the transfer 
matrices must now be computed numerically, the details 
of which are beyond our scope, see [2]. Suffice it to say 
that they can be formulated to depend upon one moment 
matrix only, which we choose to be 𝛔!. Denoting beam 
charge as q, the dependencies are then represented 
𝚽! = 𝚽! 𝛔!, 𝑞 ,which  then  implies  𝛀 = 𝛀 𝛔!, 𝑞 .  

With m fixed Eq. (6) motivates the definition 

𝐅 𝛔, 𝑞 ≜ 𝛀! 𝛔, 𝑞 𝛀 𝛔, 𝑞 !!𝛀! 𝛔, 𝑞 𝐦.                  (7) 

We refer to F as the reconstruction operator. It plays the 
majority role in the remaining analysis. Inspecting Eqs. 
(6) and (7) note that any fixed point 𝛔∗ of 𝐅(∙, 𝑞) is a 
least-squares solution to the C-S estimation problem for 
beam charge q. One way to exploit this fact is iteration of 
𝐅(𝛔, 𝑞) to its fixed point 𝛔∗. 

For ease of notation we discontinue the Gibb’s notation 
for 𝛔. The first C-S algorithm is a fixed-point method 
based upon the above iteration scheme. Starting with the 
known beam charge q*, a numeric tuning parameter 
𝛼 ∈ (0,1), and an initial guess 𝛔! for the beam moments, 
the algorithm iterates according to  

𝛔!!! = 𝐑 𝛔! ≜ 1 − 𝛼 𝛔! + 𝛼𝐅 𝛔! , 𝑞∗                       (8) 

where 𝛔! , 𝑖 = 1,2,… are the solution iterates and R is 
the recursion operator. The parameter 𝛼 stabilizes the 
search by governing the distance that 𝛔!!! can move from 
previous value 𝛔!. The operator R also has a fixed point at 
𝛔∗ which can be verified by direct substitution. Suitable 
choices for 𝛔! and 𝛼 are 𝛔!∗  and ½. It can be shown that if 
1 − 𝛼 𝐈 + 𝛼𝐅! 𝛔∗ < 1 then R is a contraction at 𝛔∗ 

with unique, convergent solution [3].  
The second C-S estimation algorithm is based upon 

continuation; we construct a continuous solution curve 
𝐬 ∙  on the interval 𝐼 ≜ 0, 𝑞∗  where 𝛔! = 𝐬 0 = 𝛔!∗  is 
the zero-current solution and 𝛔∗ = 𝐬(𝑞∗) is the full-
current solution (i.e., for the data m).  The condition 

𝐅 𝐬 𝑞 , 𝑞 − 𝐬 𝑞 = 0        for  all  𝑞 ∈ I,                     9  

the continuity of F, and the fact that 𝐬 0 = 𝛔! is known 
through Eq. (6), allow the construction of 𝐬 ∙ . Taking the 
total derivative of Eq. 9  w.r.t. charge q yields 

𝑑𝐬 𝑞
𝑑𝑞

=
𝜕𝐅 𝐬, 𝑞
𝜕𝛔

− 𝐈
!! 𝜕𝐅 𝐬, 𝑞

𝜕𝑞
  ,                  (10) 

which is used in the Taylor expansion 𝐬 𝑞 + Δ𝑞 =
𝐬 𝑞 + 𝑑𝒔(𝑞)/𝑑𝑞  𝛥𝑞 + 𝑂 Δ𝑞! . These facts motivate the 
following solution technique: Divide I into K sub-
intervals at locations 𝑞!, 𝑞!,… , 𝑞!!! = 𝑞∗  then compute 
𝛔!!! according to the recursion relation 

𝛔!!! = 𝛔! +
𝑑𝐬 𝑞!

𝑑𝑞
𝑞!!! − 𝑞!   ,                               11  

where 𝛔! is the zero-current solution of Eq. (6). Note that 
the number of iterations K is known a priori. However, 
there is more computation per iteration than the previous 
technique, we must compute the partial derivatives.  

It is useful to apply the previous iteration scheme (8) 
between each of the above recursions to “center” 𝛔!!! 
back onto the solution curve 𝐬 𝑞!!! . When 𝛔! = 𝐬(𝑞!) 
is augmented by the vector 𝛥𝛔!!! the curvature of s 
causes 𝛔! + 𝛥𝛔!!! to lie outside 𝐬(∙). Iteration by Eq. (8) 
then puts 𝛔!!! back on the solution curve at 𝐬(𝑞!!!). 

Examples 
We consider the case of the SNS Medium Energy Beam 

Transport (MEBT) section that transports a 2.5 MeV H- 
beam from an RFQ to the SNS warm linac. Because of 
low beam energy, space charge forces are prevalent 
making this an ideal test case. The MEBT consists of a 
cascade of 14 quadrupole lenses and 4 RF rebunchers. 
There is an initial bank of 4 wire scanners and 1 
additional scanner near the exit. There is also an emittance 
scanner (EMS) located at 2.45 m from the MEBT 
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entrance. Beam current was 32.5 mA and the pulse train 
was 45 mini-pulses long (~45 msec).  

With the above techniques the C-S parameters were 
reconstructed at the emittance scanner location. Figure 1, 
Figure 2, and Figure 3 show the solutions computed by 
each technique; measurements are represented as dots. 
There was no bunch length data so any longitudinal phase 
plane solutions were simulated from design specifications.  

 

 
Figure 1: Fixed-point solution. 

 
Figure 2: Continuation method solution. 

 
Figure 3: Data fitting solution. 

 Visual inspection suggests the fixed-point and 
continuation methods better reproduce the measurements 
than does data fitting. Indeed, referring to Table 1 the 
error of data fitting is an order of magnitude larger. 
However, Table 2 shows that error with the EMS-

measured C-S parameters is smallest for the data fitting 
method. We are currently still resolving this conflict. 
Factors that may contribute are 1) profile and emittance 
measurement errors, 2) data post-processing, and 3) 
model errors. An additional possibility is a discrepancy in 
ion source beam current, affecting model accuracy. 

Table 1: CS Parameters at EMS 

Technique Plane Alpha Beta Emit Res Err 
Zero Chg HOR 1.630 0.892 5.292 2.57e-6 

VER -0.672 0.276 5.593 
Fixed-Pt HOR 2.551 1.142 4.940 2.45e-6 

VER -0.411 0.275 4.345 
Continue HOR 2.061 0.927 5.472 5.18e-6 

VER -0.551 0.276 4.634 
Data Fit HOR 1.610 0.694 5.772 6.66e-4 

VER -0.330 0.268 4.337 
Emit Scan HOR 1.611 1.083 5.473 90%  

VER 0.126 0.312 4.668 95% 
 

Table 2: Fractional Error from EMS Measurement 

Plane Zero Chg Fxd-Pt Contin Data-Fit 
HOR 0.1795 0.594 0.314 0.363 
VER 4.339 4.264 5.374 3.623 
TOTAL 4.343 4.305 5.383 3.641 

CONCLUSIONS 
Our ultimate objective is to automate accelerator 

matching using profile measurements. However, there are 
numerous difficulties in estimating the C-S parameters 
from beam size measurements. Techniques are necessarily 
model dependent and there are errors in the measurement, 
thus, any discrepancies are reflected in the answer. There 
is typically more data than parameters producing an over-
determined system with no “true” solutions. However, the 
methods described here still have a well-defined solution. 
This is in contrast to a fully iterative technique where the 
solution is defined through a functional, which can have a 
significant (subjective) influence on the solution. In our 
example we are left with the ironic situation where the 
method with poorest merit produces the best predictive 
results. The cause of this situation is still being 
investigated. 
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