
EVOLUTION OF THE TRACKING CODE PLACET

A. Latina, Y. Levinsen, D. Schulte, CERN, Geneva, Switzerland
J. Snuverink, John Adams Institute at Royal Holloway, University of London, Surrey, UK

Abstract

The tracking code PLACET simulates beam transport
and orbit corrections in linear accelerators. It incorporates
single- and multi-bunch effects, static and dynamic imper-
fections. A major restructuring of its core has resulted in
an improvement in its modularity, with some immediate
advantages: its tracking core, which is one of the fastest
available for this kind of simulations, is now interfaced to-
ward three different scripting languages to further expand
its simulation capabilities: Tcl/Tk, Octave, and Python.
These three languages provide access to a vast and diverse
library of scientific tools, mechanisms for parallel com-
puting, and access to Java interfaces for control systems.
Also, several new functionalities have been added to the
PLACET core itself: parallel tracking to exploit modern
multicore CPUs and clusters of computers, the possibility
to track through the interaction region in presence of exter-
nal magnetic fields (detector solenoid) and higher order im-
perfections in magnets. PLACET is currently used to sim-
ulate the CLIC Drive Beam, the CLIC Main Beam, CTF3,
FACET at SLAC, and ATF2 at KEK amongst others.

INTRODUCTION

The PLACET tracking code [1] is in constant evolution
to cope with the new simulation needs of its user commu-
nity and with the R&D for future linear colliders. A con-
stant effort is also made in order to update the code and
take advantage of the most modern computer architectures,
while keeping its interface easy and friendly to the user.

CODE IMPROVEMENTS

Interfacing with Octave and Python

Since its early days, the PLACET tracking capabilities
have been accessed via a simple interface based on the
Tcl/Tk scripting language. In recent years an interface to
the Octave language for numerical computations was added
to PLACET. The Octave extension was well received by the
PLACET user community, because it simplified and signif-
icantly extended the PLACET instruction set with highly
specialized numerical tools. On the other hand the inter-
nals of the implementation, that consisted of a full em-
bedding of the Octave interpreter into the PLACET core
itself, showed limitations over time, when Octave evolved
and some changes in its API (Application Programming In-
terface) broke the PLACET-Octave maintainability.

To overcome this limitation, the interface between
PLACET and Octave has completely been rewritten from

scratch, this time making use of SWIG (Simplified Wrap-
per and Interface Generator) [2], a software development
tool for building scripting language interfaces to C and C++
simulation codes, originally developed at the Los Alamos
National Laboratories (now open-source). SWIG is a rel-
atively big project, dynamic, and with an active user com-
munity. Choosing SWIG immediately gave several advan-
tages, two of which are reported as an example:

• The maintainability of the interface and its portabil-
ity to the latest version of Octave are provided by the
SWIG developers team, with no efforts from us.

• SWIG allowed to create another useful interface: be-
tween PLACET and the Python language, which is
widely used by the scientific community world-wide.

As a result from this effort, PLACET can now be inter-
faced both with Octave and Python, directly and simultane-
ously. Any script can include hybrid commands from both
languages, embedded into the Tcl/Tk surrounding environ-
ment, in a very natural and convenient way:

Define beamline , particle distribution

etc ..

Octave {

R = placet_get_response_matrix("linac",

"beam0", Bpms , Correctors);

S = svd(R);

}

TestNoCorrection -beam beam0 -emitt_file

emitt.dat

Python {

E = numpy.loadtxt(’emitt.dat’)

}

where PLACET: computes the response matrix R of the
beamline ‘linac’ using the beam ‘beam0’; extracts its sin-
gular values of R with Octave; tracks the ‘beam0’ through
the active beam line, and then calls Python to post-process
the emittance file.

Parallel Computing
OpenMP Deep parallel designs are often challenging

to implement into existing codes, which are normally not
written with future parallelization in mind. In these cases,
OpenMP [3] can provide benefits of parallel computing to
some extent on a single computer with multiple threads.

OpenMP is mostly written using preprocessor declara-
tions, which means that the code can be compiled exclud-
ing these additions and work as a single threaded code. An
example can be found in the new IR Tracking Module de-
scribed later:

MOPWO053 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1014C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

#pragma omp parallel for

for (int i=0; i<beam ->slices; i++) {

// loop over the particles

part_step_particle(beamline ,i,index);

}

The pragma statement, along with an extra compile flag is
everything that is needed to execute the for loop in parallel,
assuming the loop is thread safe.

OpenMP is utilizing shared memory, which is highly
beneficial for code that need to exchange a lot of data be-
tween the processes during parallel execution. A good ex-
ample in beam dynamics is simulation of collective effects,
where the full particle distribution needs to be broadcasted
to all threads before a collective effect can be calculated.

The main limitation of OpenMP is that one is limited
to one machine, so a realistic maximum gain is typically
around one order of magnitude. Another challenge can be
unforeseen problems such as in the example above. This
for loop is ran multiple times, and each time each thread
will get an unpredictable selection of particles to track. The
result is that the threads must exchange a lot of data, slow-
ing down the simulation on multiple CPU machines. Such
problems can be overcome, but are not always easy to spot
when a lot of the parallelization is happening “behind the
curtains”.

OpenMP has been implemented in some parts of
PLACET already, namely tracking loops of SBENDS when
synchrotron radiation is inactive, and the IR Tracking mod-
ule. These additions have been very minimal in terms of
changes in the code. A speedup in specific simulations of a
factor 3 to 6 have been obtained.

Distributed Tracking using MPI

A module to allow tracking to be performed over dis-
tributed systems has been recently added to PLACET us-
ing the MPI protocol [4]. MPI is a tool designed for high
performance on both massively parallel machines and on
workstation clusters. Within PLACET, MPI can be used to
automatically distribute the computational load of tracking
over multiple nodes of a cluster, then gathering the results
afterwards. This approach can speed up the tracking by
several factors. It must be noted that MPI can be used only
in regions of the machine where collective effects can be
neglected, as their implementation requires dedicated re-
search which is still matter of study.

To access this new functionality, three new keywords
have been added to PLACET. Two lattice elements:
MPI Begin, and MPI End, which allows to enable / dis-
able the MPI tracking in a specific parts of the lattice, and
a new command: MPI TestNoCorrection that performs
the tracking. An example of PLACET MPI usage is the
reported:

Define beamline

BeamlineNew

Girder

MPI_Begin

Drift -length 1

Quadrupole -length 1 -strength -0.123

Drift -length 1

Quadrupole -length 1 -strength 0.123

MPI_End

BeamlineSet -name test

Track the beam using MPI

MPI_TestNoCorrection -beam beam0 -survey

None -mpirun "openmpirun -np 4"

The first part defines a beamline that can be tracked in par-
allel. The second part performs the tracking, using the
OpenMPI implementation of MPI. In this case the com-
putational load is distributed among 4 CPU’s.

NEW FUNCTIONALITIES

IR Tracking Module

For the purpose of studying the impact from external
fields on the beamline, we have developed what we call
an IR Tracking Module. This module reads in an external
field map from a file in addition to the beamline. The pur-
pose for creating this module was to track the beam through
the final focus system (FFS) in CLIC, including a detector
solenoid field map. However, the code is fairly general,
and can be used to track any field map for any parts of a
beamline.

The integration method is a 4th order symplectic inte-
grator [5]. The integration step can be set in the track com-
mand, by default set to 1 mm. Integration steps down to
1 µm have been checked and it was found that the error is
sufficiently small for interaction point distributions with a
step size of a few millimetres.

The input format for the field map is an ASCII table with
the columns x [m], y [m], z [m], Bx [T], By [T], Bz [T].
A linear interpolation is done between the listed values in
the table.

The tracking is at the moment implemented with a sepa-
rate tracking command in TCL:

Define beamline , particle distribution

etc ..

...

Tracks the beam beam1 through active

beamline , including the field map from

fieldmap.txt in the calculation

TestIntRegion -beam beam1 \

-emitt_file emitt.dat -synrad 1 \

-angle 0.001 -step 0.005 -backward 0 \

-writefirst 0 -filename fieldmap.txt

Worth noting in this example is the angle, step, write-
first, filename, and backward argument. Other arguments
are available and behave the same way as for other track-
ing commands. All arguments are documented, and the
documentation can be invoked with the command “Help
TestIntRegion”. The module and studies using this module
will be described in more details in [6].

Proceedings of IPAC2013, Shanghai, China MOPWO053

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

ISBN 978-3-95450-122-9

1015 C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

Cavity BPM and Short Range Wakefields

Cavity BPMs are used in several accelerator facilities
and are planned to be used in the future linear collider. Ex-
cellent position resolution, down to tens of nanometers has
been achieved, but the short-range geometric wakefields
are a concern [7], especially for small beam emittances. In
order to study these wakefields a new beamline element has
been introduced in PLACET, CavityBpm, which is a Bpm

with realistic short range and long range geometric wake-
fields. The long range wakefield description is similar to
what was already existing for other Elements. There are
two ways to input the short range wakefield, which needs to
be calculated externally, e.g. with an electromagnetic field
simulator like GdfidL [8], see figure 1 for an example:

• a list of kicks, with units [µrad GeV/µm]

• a spline which describes the wakefield, with units
[V/mm/pC] vs [m], see figure 2 for an example.

Since the wakefield is dependent on the bunch length,
the wakefield description needs to match the bunch shape.
For this reason a second method is available that approx-
imates the full bunch wakefield from a wakefield from a
short Gaussian bunch.

Figure 1: Geometry of the cavity BPM used at ATF.

Figure 2: Short range geometric wake field of the cavity
BPM used at ATF for a Gaussian shaped bunch length with
standard deviation of 7mm.

The short range wakefield description is planned to be
implemented in a more general way for every beamline
Element very soon. 1cm

SIMULATION FRAMEWORKS
ATF Framework

The Accelerator Test Facility (ATF2) at KEK provides
a test facility for the FFS of the future linear collider. In
addition, beam instrumentation devices are deployed and
developed. To study the various experiments done in the
ATF2 extraction and FFS line, a simulation framework was
setup. The framework simulates pulse-to-pulse and in-
cludes amongst others all possible dynamic imperfections
including ground motion and multi-bunch simulation. For
realistic comparison studies with the accelerator all accel-
erator magnet strength and position settings can be read in
from the official settings files.

FACET Framework
The FACET user facility at SLAC is a unique R&D fa-

cility for experimental beam physics using the SLAC linac.
PLACET has been used in the SLAC Main Control Center,
to simulate and analyze the data of beam-based alignment
techniques applied to the SLAC linac, as a flight simulator.
A very good agreement between the simulations and the
real-life data acquired has been seen, being able to predict
the result of the orbit correction with excellent precision
[9].

CONCLUSIONS
PLACET is evolving and new features are being added

in order to cope with the simulation needs of the linac
collider R&D community. New functionalities have been
added: such as tracking in the interaction region with de-
tector solenoid field map and a new beamline element,
CavityBpm which takes into account realistic short and
long geometric wakefields. To compute with the increas-
ing computational need effective parallel solutions based
on openMP / MPI have been put in place in the code, in a
manner that is transparent to the users. The reliability of
the code is being checked and verified more and more of-
ten in experimental tests, like those at ATF2 and FACET,
where PLACET has proved to be a reliable and extremely
useful tool.

REFERENCES
[1] https://savannah.cern.ch/projects/placet

[2] http://www.swig.org

[3] http://openmp.org

[4] http://www.mcs.anl.gov/research/projects/mpi

[5] Herr, W., “Numerical and Computational Tools in Accelera-
tor Physics” http://cern.ch/zwe/METHODS

[6] Inntjore Levinsen, Y., Dalena, B., and Tomas, R., “Integrated
Symplectic Tracking of Solenoid Field Maps in PLACET”, to
be published.

[7] Snuverink, J. et al. “Short Range Wakefield Measurements
of High Resolution RF Cavity Beam Position Monitors at
ATF2”, MOPWA052, IPAC13.

[8] http://www.gdfidl.de

[9] Latina, A. et al. “Results of Beam-Based Alignment Tests at
FACET”, to be published.

MOPWO053 Proceedings of IPAC2013, Shanghai, China

ISBN 978-3-95450-122-9

1016C
op

yr
ig

ht
c ○

20
13

by
JA

C
oW

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
-B

Y-
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

