Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPEA087 | Experiment on Multipactor Suppression in Dielectric-loaded Accelerating Structures with a Solenoid Field | solenoid, electron, simulation, plasma | 1319 |
|
|||
Funding: US DoE SBIR Phase I project under contract #DE-SC0007629 Efforts by numerous institutions have been ongoing over the past decade to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external rf source. Multipactor is the major issue limiting the gradient that was revealed in earlier experiments. A theoretical model predicts that the strength of solenoid field within an optimal range applied to DLA structures may completely block the multipactor. To demonstrate this approach, two DLA test structures have been built and the first high power test will be conducted in December 2012. The results will be reported. |
|||
WEPWO039 | Prototyping of TEM-like Mode Resonators in the RAON | cavity, niobium, electron, simulation | 2384 |
|
|||
Preliminary electric-magnetic designs of TEM-like mode resonators(a quarter wave resonator, a half wave resonator, two single spoke resonators) are accomplished for the superconducting linear accelerator in the RAON. Resonant cavities are numerically optimized using a CST MWS code to obtain higher E-field gradient along the beam line in conditions of the peak E-field and B-field is less than 30MV/m, 60mT respectively. Prototyping test of a quater wave resonator of optimum beta 0.047 using OFC(Oxygen Free Cupper)is in progress to analyze resonant frequency shifting by tolerances in fabrication process and external perturbations. It is compared with expected one using compuational codes. | |||
WEPWO067 | Conditions for the Existence of 1- and 2-point Multipactor in SRF Cavities | cavity, electron, simulation, superconductivity | 2456 |
|
|||
Funding: NSF award DMR-0807731 One- and two-point multipactor (MP) in RF cavities are well-known phenomena. However, conditions when this or the other type of discharge develops were not clearly defined up to now. Here, an explicit description of these two types of the MP is presented, geometrical parameters, or figures of merit, responsible for initiation of the MP defined, and areas of their existence delineated. Small sizes of trajectories in the MP require a very precise calculation of fields for simulations. On the other hand, due to these small sizes, fields can be presented as the Taylor expansions and trajectories can be found solving ordinary differential equations of motion. Conditions of motion stability and influence of the Miller force are also accounted. |
|||