Paper |
Title |
Page |
MOPFI051 |
Beam Transfer Systems for the LAGUNA-LBNO Long Baseline Neutrino Beam from the CERN SPS |
395 |
|
- B. Goddard, W. Bartmann, I. Efthymiopoulos, Y. Papaphilippou, A.S. Parfenova
CERN, Geneva, Switzerland
|
|
|
For the Long Baseline neutrino facility under study at CERN (LAGUNA-LBNO) it is initially planned to extract a 400 GeV beam from the second long straight section in the SPS into the existing transfer channel TT20 leading to the North Area experimental zone, to a new target aligned with a far detector in Finland. In a second phase a new High-Power Proton Synchrotron (HPPS) accelerator is proposed, to give a 2 MW beam at about 50 GeV on the same target. In this paper the beam transfer systems required for the project are outlined, including the new sections of transfer line between the SPL, HPPS and SPS, and from the SPS to the target, and also the injection and extraction systems in the long straight section of the HPPS. The feasibility of a 4 GeV H− injection system is discussed.
|
|
|
MOPFI059 |
Design and Performance of the Beam Transfer Lines for the HIE-ISOLDE Project |
416 |
|
- A.S. Parfenova, W. Andreazza, J. Bauche, E.D. Cantero, P. Farantatos, M.A. Fraser, B. Goddard, Y. Kadi, A.J. Kolehmainen, D. Lanaia, M. Martino, R. Mompo, E. Siesling, A.G. Sosa, M.A. Timmins, G. Vandoni, D. Voulot, E.S. Zografos
CERN, Geneva, Switzerland
|
|
|
Beam design and beam optics studies for the HIE-ISOLDE transfer lines have been carried out in MadX, and benchmarked against Trace3D results. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine's lattice to different individual error sources was studied. As a result, the tolerances for the various error-contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical aperture were validated. The methodology and results of the studies are presented.
|
|
|
THPFI056 |
Design Study for a Future LAGUNA-LBNO Long-baseline Neutrino Facility at CERN |
3418 |
|
- I. Efthymiopoulos, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, M. Calviani, A. Ferrari, R. Garoby, F. Gerigk, S.S. Gilardoni, B. Goddard, A. Kosmicki, C. Lazaridis, J.A. Osborne, Y. Papaphilippou, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg, P. Velten, H. Vincke
CERN, Geneva, Switzerland
|
|
|
A design study for a long baseline neutrino oscillation experiment (LBNO) with a new conventional neutrino beamline facility (CN2PY) at CERN was initiated in September 2011, supported by EU/FP7 funds. The beam will be aimed at a next generation deep-underground neutrino observatory located at the Pyhasalmi (Finland) mine at a distance of 2300 km. In an initial phase the CN2PY facility will use a 400 GeV beam extracted from SPS up to a maximum power of 750 kW, and in a second phase a 2 MW beam of about 50 GeV produced by a new High-Power Proton Synchrotron accelerator using the LP-SPL as injector also under design. The paper will focus on the design challenges of this MW-class facility and on the optimization studies of the secondary beam elements (target and horns) to produce a neutrino beam spectrum that matches best the experimental requirements for neutrino flavor oscillations and CP-violation tests. The challenges and bottlenecks in the existing CERN accelerator complex to produce the high-intensity beams foreseen for this facility at the initial phase are discussed.
|
|
|
THPWO081 |
Design Options of a High-power Proton Synchrotron for LAGUNA-LBNO |
3948 |
|
- Y. Papaphilippou, J. Alabau-Gonzalvo, A. Alekou, F. Antoniou, M. Benedikt, I. Efthymiopoulos, R. Garoby, F. Gerigk, B. Goddard, C. Lazaridis, A.S. Parfenova, E.N. Shaposhnikova, R. Steerenberg
CERN, Geneva, Switzerland
|
|
|
Design studies have been initiated at CERN, exploring the prospects of future high-power proton beams for producing neutrinos, within the LAGUNA-LBNO project. These studies include the design of a 2 MW high-power proton synchrotron (HP-PS) using the LP-SPL as injector. This paper resumes the design options under study in order to reach this high power, and their implications regarding layout, magnet technology beam loss control and RF considerations. Optics optimization studies are also presented including beam transfer and collimation considerations.
|
|
|