Author: Knaster, J.
Paper Title Page
MOPEA032 Installation Status of Deuteron Injector of IFMIF Prototype Accelerator in Japan 148
 
  • H. Shidara, J. Knaster
    IFMIF/EVEDA, Rokkasho, Japan
  • D. Bogard, N. Chauvin, P. Girardot, R. Gobin, F. Harrault, D. Loiseau, P.A.P. Nghiem, A. Roger, F. Senée
    CEA/DSM/IRFU, France
  • L. Semeraro
    F4E, Barcelona, Spain
 
  The International Fusion Materials Irradiation Facility (IFMIF) will generate a neutron irradiation field with the spectrum simulating the fusion D-T neutrons (14 MeV) to qualify suitable materials for fusion power plants. The IFMIF accelerator facility provides two CW / 40 MeV / 125 mA deuteron beams to the IFMIF Lithium target facility. In the Engineering Validation and Engineering Design Activities phase, the concept of IFMIF is validated with a single CW / 9 MeV / 125 mA deuteron accelerator prototype under construction in JAEA/Rokkasho. The injector part has been designed, constructed and successfully tested by CEA/Saclay. The ECR ion source produces a deuteron beam of 140 mA at 100 keV. In spring 2013, the injector will be delivered and re-installed on the Rokkasho site. This paper will focus on the detailed plan of the injector’s re-assembly as well as on the re-commissioning. Further possible improvements are discussed in order to achieve reliable operation.  
 
TUOAB101 Installation and Commissioning of the 1.1 MW Deuteron Prototype Linac for IFMIF 1090
 
  • J. Knaster
    IFMIF/EVEDA, Rokkasho, Japan
  • P. Cara, A. Mosnier
    Fusion for Energy, Garching, Germany
  • S. Chel
    CEA/DSM/IRFU, France
  • J. Molla
    CIEMAT, Madrid, Spain
  • H. Suzuki
    Japan Atomic Energy Agency (JAEA), International Fusion Energy Research Center (IFERC), Rokkasho, Kamikita, Aomori, Japan
 
  IFMIF, the International Fusion Materials Irradiation Facility, will learn the degradation of the mechanical properties of purpose designed reduced activation ferritic-martensitic steels under bombardment of 14 MeV neutrons at 1018 n/m2s flux reaching values of 150 displacements per atom in the steel lattice. The understanding of the impact of Deuterium-Tritium fusion neutrons in next decade is essential to design and construct a fusion power plant; the next step after ITER. The 14 MeV neutrons are stripped from a liquid Li screen flowing at 15 m/s impacted by 2 parallel 125 mA deuteron beam at 40 MeV. IFMIF project, in its engineering validation phase, will operate in Rokkasho a 125 mA deuteron LINAC at 9 MeV that will validate the concept of IFMIF accelerator, LIPAc. The ion source will inject 140 mA deuterons at 100 KeV in a normal-conducting RFQ that will deliver the bunched beam at 5MeV to be accelerated up to 9 MeV thanks to 8 half-wave superconducting resonators. The installation and commissioning of LIPAc in Rokkasho (Japan) is sequential and the first stage is starting now; the strategy to overcome potential difficulties is detailed.  
slides icon Slides TUOAB101 [2.396 MB]