Paper | Title | Page |
---|---|---|
TUPFI058 | Simulation of Beam-induced Gas Plasma in High Gradient RF Field for Muon Colliders | 1478 |
|
||
There is a strong limit of available RF gradient in a vacuum RF cavity under magnetic fields because the magnetic field enhances a dark current density due to electron focusing and increases probability of an electric breakdown. This limits the cooling performance. A dense hydrogen gas filled RF cavity can break this limit because the gas acts as a buffer of dark current. However, RF power loading due to a beam-induced plasma in a dense gas filled RF cavity (plasma loading effect) is crucial to design the practical cavity. Experiment shows that the plasma loading can be mitigated in denser hydrogen gas and by doping a small amount of electronegative gas in the cavity. A complicate plasma chemical reaction should be dominated in such a dense hydrogen gas condition. A beam-induced plasma is simulated by taking into account the plasma chemistry to reproduce the condition by using the supercomputer at LBNL. We will also investigate the space charge effect in a dense gas in this effort. | ||
TUPFI059 | Summary of Dense Hydrogen Gas Filled RF Cavity Tests for Muon Acceleration | 1481 |
|
||
Dense hydrogen gas filled RF cavity has a great potential to accelerate a large phase space muon beam in a strong magnetic field. The concept of novel RF cavity has been demonstrated by using an intense proton beam at Fermilab. The experimental result was agreed extremely well with the conventional dilute plasma physic. Based on the model, the beam-induced plasma in the gas filled RF cavity could be controlled by adding a small amount of electronegative gas in dense hydrogen gas. Overview of these experiments will be shown in this presentation. | ||
TUPFI060 | Complete Muon Cooling Channel Design and Simulations | 1484 |
|
||
Considerable progress has been made in developing promising subsystems for muon beam cooling channels to provide the extraordinary reduction of emittance required for an Energy-Frontier Muon Collider, but lacks an end-to-end design. Meanwhile, the recent discovery of a Higgs-like boson has created interest in the High Energy physics community for a Higgs Factory to investigate its properties and verify whether it is Standard Model or beyond. We present principles and tools to match emittances between and within muon beam cooling subsystems that may have different characteristics. The Helical Cooling Channel (HCC), which combines helical dipoles and a solenoid field, allows a general analytic approach to guide designs of transitions from one set of cooling channel parameters to another. These principles and tools will be applied to design a complete cooling channel that would be applicable to a Higgs Factory and an Energy Frontier Muon Collider. | ||
TUPFI064 | Beam Induced Plasma Dynamics in a High Pressure Gas-Filled RF Test Cell for use in a Muon Cooling Channel | 1496 |
|
||
Filling an RF cavity with a high pressure gas prevents breakdown when the cavity is place in a multi-Tesla external magnetic field. The choice of hydrogen gas provides the additional benefit of cooling a beam of muons. A beam of particles traversing the cavity, be it muons or protons, ionizes the gas, creating an electron-ion plasma which absorbs energy from the cavity. The ionization rate can be calculated from a beam intensity measurement. Energy loss measurements indicate the loading per RF cycle per electron-ion pair range from 10-18 to 10-16 Joules in pure hydrogen, and 10-20 to 10-18 Joules when hydrogen is doped with dry air. The addition of an electronegative gas (oxygen) has been observed to reduce the lifetime of ionization electrons in the cavity to below 1 nanosecond. Additionally, the recombination rate of electrons and hydrogen ions has been measured to be on the order of 10-6 cubic centimeters per second. The recombination mechanism and hydrogen ion species, along with the three-body attachment process of electrons to oxygen, will be discussed. | ||
TUPFI068 | High Power Tests of Alumina in High Pressure RF Cavities for Muon Ionization Cooling Channel | 1508 |
|
||
It is important to make a compact muon ionization cooling channel to increase the cooling efficiency (muon survival rate, cooling decrement, etc). A proposed scheme to reduce the radial size of RF cavities at a given resonance frequency is to insert a dielectric material into the RF cavity. In vacuum cavities, however, dielectric materials are extremely susceptible to breakdown in high power conditions. High-pressure hydrogen gas has been shown to inhibit breakdown events in RF cavities in strong magnetic fields. An experiment has been designed to test surface breakdown of alumina in RF cavities. A structure has been designed to maximize the parallel field parallel to the surface while bringing the cavity into a desired frequency range (800-810MHz). Alumina is tested in this configuration under high power conditions. The experimental result will be shown in this presentation. | ||
THPWA047 | GEM*STAR - New Nuclear Technology to Produce Inexpensive Diesel Fuel from Natural Gas and Carbon | 3738 |
|
||
The 75,000 tons of US stored spent nuclear fuel (SNF) from conventional nuclear reactors is a resource that could provide 125 years of all US electrical power. Or it could also provide a great amount of process heat for many applications like producing green diesel fuel from natural gas and renewable carbon. An accelerator system like the SNS at ORNL can provide neutrons to convert SNF into fissile isotopes to provide high temperature heat using technology developed at the ORNL Molten Salt Reactor Experiment. In the GEM*STAR accelerator-driven subcritical reactor that we wish to build, the accelerator allows subcritical operation (no Chernobyls), the molten salt fuel allows volatiles to be continuously removed (no Fukushimas), and the SNF does not need to be enriched or reprocessed (to minimize weapons proliferation concerns). The molten salt fuel and the relaxed availability requirements of process heat applications imply that the required accelerator technology is available now. A new opportunity has arisen to use GEM*STAR to reduce the world’s inventory of weapons-grade plutonium leaving only remnants that are permanently unusable for nuclear weapons.
* Charles D. Bowman et al., “GEM*STAR: The Alternative Reactor Technology Comprising Graphite, Molten Salt, and Accelerators,” Handbook of Nuclear Engineering, Springer (2010). |
||