Author: Hansen, O.M.
Paper Title Page
TUPFI018 A Simplified Magnetic Field Tapering and Target Optimisation for the Neutrino Factory Capture System 1370
 
  • I. Efthymiopoulos, S.S. Gilardoni, O.M. Hansen, G. Prior
    CERN, Geneva, Switzerland
  • O.M. Hansen
    University of Oslo, Oslo, Norway
  • G. Prior
    University of Canterbury, Christchurch, New Zealand
 
  In the Neutrino Factory, a 4 MW proton beam with a kinetic energy between 5 and 15 GeV interacts with a liquid mercury jet target in order to produce pions that will decay to muons, which in turn decay to neutrinos. The baseline-capturing layout consists of a series of solenoids producing a tapered magnetic field from 20 T, near the target, down to 1.5 T at the entrance of the drift section where the captured pions decay into muons to produce a useful beam for the machine. In our alternative layout the magnetic field is rapidly squeezed from 20 T to 1.5T using only three solenoids. This layout showed to produce similar performance, having the advantage being simpler and could potentially be made more robust to radiation. Here we report on further optimization studies taking into account the complete path and shape fluctuations of the Hg-jet.  
 
TUPFI020 Towards a Symmetric Momentum Distribution in the Muon Ionization Cooling Experiment 1376
 
  • O.M. Hansen
    University of Oslo, Oslo, Norway
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • I. Efthymiopoulos, O.M. Hansen
    CERN, Geneva, Switzerland
 
  The Muon Ionization Cooling Experiment (MICE) is under development at Rutherford Appleton Laboratory (UK). It's a proof-of-principle experiment for ionization cooling, which is a prerequisite for a future Neutrino Factory(NF) or a Muon Collider. The muon beam is designed to have a symmetrical momentum distribution in the cooling channel of the NF. In the MICE beamline pions are captured by a quadrupole triplet, then pion momentum is selected by dipole 1 (D1) after which the pions decay to muons in the decay solenoid. After the decay solenoid, the muon beam momentum is selected by dipole 2 (D2), the beam is focused in two quadrupole triplets and is finally characterized by a set of detectors. By doing a D1-scan of the currents, where the optics parameters are scaled according to the pion momentum, from 238-450 MeV/c the muon momentum distribution is changed. In this paper simulation results from G4Beamline and real data from MICE are presented and compared.  
 
TUPFI020 Towards a Symmetric Momentum Distribution in the Muon Ionization Cooling Experiment 1376
 
  • O.M. Hansen
    University of Oslo, Oslo, Norway
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • I. Efthymiopoulos, O.M. Hansen
    CERN, Geneva, Switzerland
 
  The Muon Ionization Cooling Experiment (MICE) is under development at Rutherford Appleton Laboratory (UK). It's a proof-of-principle experiment for ionization cooling, which is a prerequisite for a future Neutrino Factory(NF) or a Muon Collider. The muon beam is designed to have a symmetrical momentum distribution in the cooling channel of the NF. In the MICE beamline pions are captured by a quadrupole triplet, then pion momentum is selected by dipole 1 (D1) after which the pions decay to muons in the decay solenoid. After the decay solenoid, the muon beam momentum is selected by dipole 2 (D2), the beam is focused in two quadrupole triplets and is finally characterized by a set of detectors. By doing a D1-scan of the currents, where the optics parameters are scaled according to the pion momentum, from 238-450 MeV/c the muon momentum distribution is changed. In this paper simulation results from G4Beamline and real data from MICE are presented and compared.