MANUFACTURE AND TESTING OF OPTICAL SCALE ACCELERATOR STRUCTURES FROM SILICON AND SILICA*

R. Joel England SLAC National Accelerator Laboratory

Stanford, Tech-X, MPQ, Incom, Purdue, UCLA

IPAC 2012

Tues May 22, 2012

*Work supported by U.S. Department of Energy under Grants DE-AC02-76SF00515, DE-FG06-97ER41276 and by DARPA Grant N66001-11-1-4199

Who Are We?

Stanford University

Prof. Bob Byer Prof. James Harris Prof. Olav Solgaard Ken Soong Edgar Peralta Behnam Montazeri Ken Leedle Chia-Ming Chang Chris McGuinness

red: students

SLAC National Accelerator Laboratory

Joel England Eric Colby Bob Noble Ziran Wu Dieter Walz Cho Ng

Tech-X Corporation

Ben Cowan Brian Schwartz Dan Abell Estelle Cormier

Max Planck Institute Peter Hommelhoff

Johannes Hoffrogge

UCLA Gil Travish Josh McNeur Esperanza Arab

Purdue Univ.

Minghao Qi Chunghun Lee Yi Xuan Li Fan Leo T. Varghese

Dielectric Laser Accelerator Concept

Laser Damage Threshold - Results

Ti:Sapph Laser wavelength: 800nm; Pulse length: 1ps;

Structure Fabrication Studies

Silicon Woodpile Structure

simulation of accelerating mode

max gradient ~ 400 MV/m

B. Cowan, Tech-X

MAX-PLANCK-INSTITUT FÜR QUANTENOPTIK

images courtesy of C. McGuinness

6

PURDUE

17-layer structure built with ~400nm "logs" by photolithography Suitable for 3.5 µm wavelength drive laser (Ti:Saph laser + OPA)

Dielectric Fiber Accelerator

Image Attribution: Crystal-Fibre, Inc.

central hole is beam channel and accelerating mode guide Example CUDOS mode

B. Noble, J. Spencer

PBG fiber with central defect aperture ~ 0.68 λ ; G₀ ~ 2.5 GV/m

X. E. Lin, PRSTAB 4, 051301 (2001)

borosilicate PBG fiber prototype, via SBIR with Incom Inc.

Grating-Based Planar Structure

SiO₂ planar gratings with sidecoupled laser and flat beam.

Periodic phase reset of the EM field results in a large accelerating gradient over many periods. damage threshold for SiO₂ >3 GV/m @ 1ps

G_{0,max} ~ 1GV/m

E. Peralta, recently fabricated prototype structure

Multi-Stage Layout Concept

E. R. Colby, R. J. England, R. J. Noble, "A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration", PAC 2011.

PURDUE

E-Beam Pulse Format

T_sep=5.7 nsec

E. R. Colby, R. J. England, R. J. Noble, "A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration", PAC 2011.

Prior Work: Net Acceleration

Collider Parameters

	Traditional RF	DLA
Source	Klystron (Microwaves)	Commercial µJ Class IR Laser
Wavelength	2-10 cm	1-10 µm
Bunch Length	1-5 ps	1-100 attosec
Bunch Charge	1-4 nC	1-10 fC
Required Emittance	0.1-1 µm	1-10 nm
Rep Rate	1-1000 Hz	1-10 MHz
Confinement of Mode	Metal Boundaries	Photonic Crystal (1D, 2D, 3D)
Material	Metal	Dielectric
Max Unloaded Gradient	30-100 MV/m	0.5-2 GV/m
Power Coupling Method	Critically-coupled Metal WG	Free-space /Silicon WG
Luminosity (cm^-2/s) *	1.70E+35	1.05E+36
Beamstrahlung E-loss (%) *	53	4.4
Wall Plug Power (MW) *	540	390

* For 10TeV c-o-m collider scenario, based on numbers from Report of ICFA-ICUIL 2010 Joint Task Force on Ultra-High Intensity Lasers, Ch. 1. RF numbers extrapolated from ILC parameters scaled to higher luminosity.

Multi-Stage Layout Concept

Train of Integrated Modules on Silicon Wafers

Accelerator Subcomponents

Supertip Emitter Source Development

Dr. Peter Hommelhoff, Johannes Hoffrogge, (MPQ)

• Optimized 30 keV structure found with the help of FDTD eletric field simulations and particle tracking. Result:

Tip pointing through one anode, with second anode a few mm away (left). With this geometry, the field on electrons' path never drops below ~4MV/m

Next Linear Collider Test Accelerator

E163: A facility for testing laser-driven accelerator structures. Beam energy = 60MeV; σ_t = 1ps; σ_E = 0.1%

First Beam-Test Prototypes

Experiment Vacuum Setup

Interaction Point Schematic

Electron Energy Spectrum

First observed transmission through the grating structures (1.2 μ m gap). Acceleration will manifest as a "broadening" of the transmitted distribution.

Transmission Spectra

IR Optics

22

Timing Overlap

• Gross timing overlap (~50ps level): using OTR foil and fast photodiode

 Fine timing overlap (~ps level): will use the interaction signal (detection of energy modulation of the beam spectrum) itself to cross-correlate electron and laser beams at the IP

Online Data Analysis

Long-Term Timeline

Thank You!

