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Outline

 Optimization of brightness and emittance
 Challenges of low emittance

– Nonlinear dynamics
– Collective effects

 Early ideas for diffraction-limited or “ultimate” light 
sources

 Trends in light source design
 Progress in next-generation designs
 Conclusion
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X-ray Brightness

 The quality of a beam is expressed by the brightness

 Approximate description of single-electron undulator 
radiation distribution1 

 “Diffraction-limited” condition for electron beam

(simplified form)

1P. Elleaume, in Wigglers, Undulators, and Their Applications, 2003.
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Example

 8 keV is sometimes taken as defining the lower 
boundary of “hard x-rays”

 For typical 3rd-generation rings

so we are several orders of magnitude away from DL 
performance in horizontal

 For an undulator filling a typical 5-m-long straight

which is feasible, but not commonly delivered.
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Emittance in Electron Rings

 Equilibrium emittance is given by1,2

 Naively, then, we want
– Low energy
– Many weak dipoles
– Judicious choice of lattice type and tune
– Strong damping wigglers

1H. Wiedemann, Particle Accelerator Physics, Vol. 1 (1993)
2J. Murphy, NSLS Light Source Data Book (1989).
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Challenges of Low Emittance

 If we increase N
d
 to reduce emittance

– Stronger sextupoles like N
d

– Dynamic aperture decreases like 1/N
d

– Second order chromaticities increase like N
d
 

 If we optimize tune to reduce emittance
– Dispersion smaller
– Chromaticity larger
– Means stronger sextupoles...

 The essential challenge: stronger sextupoles lead to 
difficult non-linear dynamics
– Greater difficulty injecting
– Reduced lifetime



M. Borland, Ultimate Storage Rings, IPAC2012, 5/12
7

Optimization of Nonlinear Dynamics

 These issues present even for early 3rd generation 
sources
– Led to introduction of “geometric sextupoles”
– Emphasis on reducing amplitude-dependent tune shifts1

 Resonance driving term (RDT) minimization2

– Supports tuning larger
numbers of sextupole
and octupole families

– Many successful
applications

– Must check and iterate
with tracking

1: E. Crosbie, PAC 1987, 443-445.
2: J. Bengtsson, SLS 9/97 (1997).
3: A. Streun, OPA Lattice Design Code.

The program OPA3 is one of several
used for RDT minimization.
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Direct Optimization of Nonlinear Dynamics1-6

 Optimize quantities determined by tracking, e.g.,
dynamic acceptance, momentum acceptance, 
Touschek lifetime, diffusion rates
– Made possible by increases in computing power
– Often used with multi-objective optimizer

 Tune linear lattice as well as sextupoles, octupoles 

1: H. Shang, PAC 2005, 4230-4232.
2: M. Borland, PAC 2009, 3850-3852; APS LS 319 (2010).
3: C. Steier et al., IPAC2010, 4746-4749.

4: C. Sun et al., PAC 2011, 793-795.
5: L. Yang, PRSTAB 14, 054001 (2011).
6: W. Gao, PRSTAB 14, 094001 (2011).

Example of direct optimization
of APS dynamic acceptance
and Touschek lifetime
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Intrabeam scattering (IBS)

 Multiple electron-electron scattering in a bunch
– Leads to increased emittance and energy spread

 Fights the beneficial E2 scaling of emittance
 Motivates having many low-intensity bunches

APS emittance at 200 mA
as a  function of energy
with and without IBS
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Touschek scattering

 Hard electron-electron scattering leading to large 
longitudinal momentum kicks
– Particle loss if outside local momentum acceptance

 Normally thought of as worse for low emittance
– However, if beam is very “cold”, Touschek lifetime 

increases!

Touschek lifetime for NSLS II
assuming emittance can be
arbitrarily reduced
(lattice courtesy W. Guo)
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Diffraction-Limited Light Source1

1: D. Einfeld et al., PAC 1995, 177-179. Figures used courtesy D. Einfeld.

In 1995, Einfeld et al. described a
diffraction-limited light source
based on a multi-bend achromat (MBA)
• 7 bends per achromat
• TME-like cells in the center
• Defocusing in dipoles to save space
• 0.5 nm emittance at 3 GeV
• Small beta values at IDs
• Only 400m circumference

1/12 of ring
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The “Ultimate Storage Ring”
 In 2000, Ropert et al. described1 an Ultimate Storage 

Ring Light Source
 7 GeV, 2 km circumference,

four-bend achromatic cells
– 0.3 nm emittance

 7-m-long undulators
 500 mA 
 ~100x increase in brightness
 Suffered from comparison

with ERL concepts2

– Emittance significantly
larger

– High power loads
 Many misinterpreted these

problems as fundamental
1: A. Ropert et al., EPAC 2000, 83-87; Figs. courtesy L. Farvacque.
2: I. V. Bazarov et al., PAC 2001, 230-232.
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PETRA III Facility1

 In 2004, PETRA III was proposed
 Conversion of 2.3-km high-

energy physics ring
 Replaced one arc with

DBA cells for IDs
– Beta functions approaching

the ideal values L/π
 80 m of wigglers

reduce emittance
4.5-fold to 1 nm

 Now in operation at
6 GeV, 100 mA

1: K. Balewski et al., PETRA-III TDR (2004).
Figures courtesy K. Balewski.

Cell design for new octant of PETRA III.
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NSLS Upgrade: NSLS II1

 Shares features with PETRA III
– Large ring (792 m)  for

its energy (3 GeV)
– Damping wigglers planned

• Will reduce emittance
up to 4-fold

• 0.5 nm emittance with 8 DWs

 Beta functions in short
straights within factor
of two of ideal values

 Challenging nonlinear
dynamics tuned with
10 sextupole families

 Commissioning in 2014

1: J. Ablett et al., NSLS-II CDR (2006).
NSLS-II lattice file courtesy W. Guo.
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MAX IV Light Source1

 MAX IV will be the first MBA-
based light source
– 3 GeV, 528 m circumference
– 20 7BA cells

• Relaxed from TME condition
to improve nonlinear dynamics

– ε
0
=263 pm with 4 wigglers

– In construction

1: S.Leemann et al., PRSTAB 12, 120701 (2009). Figures courtesy S. Leemann.

Magnets are built with common yokes to reduce cost while
improving relative alignment and stability.
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MAX IV Light Source

 Nonlinear dynamics tuned
using RDT minimization
– 5 sextupole families
– 3 octupole families

• Directly address tuning
of amplitude-dependent
tune shifts

 Touschek lifetime improves
significantly as emittance
is lowered

 IBS at 500 mA controlled
using bunch-lengthening
cavity

Figures courtesy S. Leemann.
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Next-Generation Designs: XPS71

 7 GeV,  1.1 km circumference (APS replacement)
 40x6BA cells, giving ε

0
=78 pm

 Feasibility not shown
– Poor nonlinear dynamics performance
– Strong combined function quad/sextupole  magnets

 First attempt to challenge ERLs
– 0.5 μm normalized emittance
– Too extreme for a 1.1-km circumference

 However, revived some earlier ideas2,3

– Operation with “round beams” to reduce IBS and 
increase lifetime

– Use of on-axis injection and “swap-out” mode to deal 
with small dynamic aperture

1: M. Borland, NIM A 557, 230-235 (2006); ERL2005 workshop.
2: L. Emery et al., PAC 2003, 256-258.
3: E. Rowe et al., Part. Accel 4, 211 (1973).
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Operation with “Round Beams”

 Present rings have κ=ε
y
/ε

x
≪1

– Improves brightness
– Essential for accumulation with small gap chambers

 When we make ε
x 
very small, κ≪1 is pointless

– Brightness dominated by single-electron radiation 
distribution

– Drives up IBS and Touschek scattering rates
 Better approach1,2

– Run with κ=1 (“round beams”)
– Inject on-axis

• Greatly reduces acceptance requirements
• Drive emittance much lower!

– Use swap-out mode of operation:
• Upon injection, old bunch (trains) are ejected and replaced

1: L. Emery et al., PAC 2003, 256-258.
2: E. Rowe et al., Part. Accel 4, 211 (1973).
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Next-Generation Designs: Tsumaki et al.

 6 GeV, 2 km circumference 
 32x10BA cells, giving ε

0
=35 pm 

 First feasible <100 pm design
– DA suitable for beam

accumulation
– Several hour Touschek lifetime
– Workable magnet designs with

20mm bore radius
– With full coupling and IBS, 

21 pm in both planes
 However

– Large beta functions in straights
not ideal for brightness

– Straight sections only 4m long

1: K. Tsumaki et al., NIM A 565, 394-405 (2006).
Figures courtesy K. Tsumaki.
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Next-Generation Designs: USR71

 7 GeV, 3.1 km circumference 
 40x10BA, giving ε

0
=30 pm

– 10 m straight sections 
– Beta functions in straights

better, but still not ideal
 Feasible design

– DA suitable for
on-axis injection

– Momentum aperture
of ±2%

– Workable magnet designs
with 20mm bore radius

1: M. Borland, AIP Conf. Proc 1234, 911-914 (2010).

On-momentum
dynamic 
acceptance
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Next-Generation Designs: USR7
 IBS and Touschek controlled using full coupling at

200mA with 4200 bunches

~300-fold increase in
brightness compared to
APS
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Swap-out Example

 For USR7, lifetime is ~4 hours with 200 mA in 4200 
bunches
– 80% of 500 MHz buckets filled
– 0.5 nC/bunch

 Assume kickers have 10 ns rise and fall times
– 210 trains of 20 bunches
– Need 40 ns kicker flattop

 Replace trains when they “droop” by 10%
– Replace one train every 6 seconds
– Average injector current is <2 nA

 Take APS injector (c. 1994) for comparison
– Delivers 6 nA routinely
– Injector availability is >97% (average of last 12 years)
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Indiana University 10pm USR design1,2

1: Y.Jing, IU thesis, August 2011.
2: Y. Jing et al., PAC 2011, 781-783. Content courtesy Y. Jing.

Dynamic acceptance suitable for on-axis injection.
Momentum acceptance >±1.5%
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Next-Generation Designs: PEP-X1

 Would use PEP-II tunnel
– 4.5 GeV, 2.2 km circumference

– 48x7BA, giving ε
0
=22 pm

• 90m damping wigglers 

– 5 m straight sections
– With full coupling and IBS,

11 pm emittances
 Patterned on MAX IV

– More aggressive
tuning for low
emittance

 Long straights use
up 30% of 
circumference

1: Y. Nosochkov et al, IPAC 2011, 3068-3070.
Figures courtesy Y. Cai.
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PEPX nonlinear compensation scheme1,2

 Automatic cancellation of most 2nd-order RDTs driven 
by chromatic sextupoles

 Use of geometric sextupoles to cancel remaining RDTs
 Relies on assembling cells into units that have +I 

transform in both planes

PEPX Baseline design (160pm) PEPX USR design (22pm)

Figures courtesy Y. Cai.
See also, Y.Cai, FLS2012.

1:Y. Cai, NIM A 645, 168-174, 2011.
2:Y. Cai et al., SLAC-PUB-14785 (2012).
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Next-Generation Designs: SPring-8 II

 In early 2012, Ishikawa et al.,
published a preliminary
upgrade report for SPring-81

– Replace existing 1.4-km ring
in 2019 (1-year shutdown)

– Use existing tunnel and
x-ray hutches

– ~1000x brightness

1:T. Ishikawa et al., Jan. 2012. (Google “Spring-8 upgrade plan”.)
Graphics and content courtesy T. Watanabe.

SPring-8 (present) SPring-8 II (planned)

Electron energy 8 GeV 6 GeV

Current 100 mA 300 mA

Emittance 3.4 nm 67→10 pm

Coupling 0.2% ~2%

Bunch length 13 ps >20 ps

# beamlines 62 max. 62+ max
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SPring-8 II Preliminary 6-BA Lattice

Graphics and content courtesy T. Watanabe.

67 pm emittance without
damping wigglers or
undulator damping

DA with errors suitable for
on-axis injection.

New injection scheme planned
with on- and off-axis modes
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 What to do with Tevatron tunnel now?
 Exploratory light source design

– Roughly match 6-straight, 6-arc geometry
– Use PEP-X optics modules

• 6 arcs with 30 cells of 7BA giving N
d
=1260

• Relax cell tunes, giving 
0
=2.9 pm at 9 GeV

– Preliminary MOGA gives 
• Adequate DA for on-axis injection, 4.5 h gas-scattering lifetime
• Adequate LMA for 4 h Touschek lifetime for 0.5nC/bunch

τUSR: A Tevatron-Sized USR1

1:M. Borland, ICFA Beam Dynamics Newsletter 57, 2012; these proceedings, TUPPP033.

=6.28...
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Collective Effects vs Energy

Microwave threshold

Bunch lengthening
helps improve lifetime
and MWI threshold at
low energy

Energy spread

Touschek lifetime
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Expected Performance

Emittance with IBS shows
broad minimum between
9 and 11 GeV.

Brightness is spectacular
for 10 keV and above

(Calculations assume
superconducting 
undulators.)
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Superconducting Ring1

 At FLS2012, W. Guo et al. described a USR based on 
superconducting magnets
– High fields possible
– Combined function bend/quad/sextupole 
– Implies a very compact source

 Exploratory linear optics design
– All magnets have gradient
– 828 m circumference

– 
0
=6.4 pm

 Dynamic aperture is
small as of yet
– Trying lumped 

chromaticity correction
 Promising idea for bigger

rings as well

1:W.Guo et al., Superconducting Ultimate Storage Ring Design, FLS2012. Figure courtesy W. Guo.
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Conclusion

 Rumors of the death of storage rings were greatly 
exaggerated

 PETRA III, NSLS II, and MAX IV are demonstrating that 
significantly higher brightness is possible

 Starting with Einfeld et al. in  1995, a series of 
concepts for diffraction-limited storage rings have 
been advanced

 MAX IV will provide the first real-world test of the 
multi-bend achromat concept

 We can expect a 100-1000-fold brightness increase 
across a wide spectral range

 Thanks to K. Balewski, Y. Cai, D. Einfeld, L. Farvacque, 
W. Guo, Y. Jing, S. Leemann, K. Tsumaki, and T. 
Watanabe for materials used in this talk.
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