

May 22, 2012 IPAC12, New Orleans

Status of the J-PARC Facility

Shoji Nagamiya

J-PARC Center

Japan Atomic Energy Agency (JAEA) High Energy Accelerator Research Organization (KEK)

1) J-PARC General

- 2) Status before the Earthquake
- 3) Status after the Earthquake
- 4) Accelerator Performance and the Future

J-PARC Facility (KEK/JAEA)

South to North

Bird's eye photo in January of 2008

COLUMN TWO

J-PARC Facility (KEK/JAEA)

South to North

Hadron Exp.

Facility

50 GeV Mai

Linac

Bird's eye photo in January of 2008

Neutrino Beams (to Kamioka)

50 GeV Mais

Linac

Bird's eye photo in January of 2008

J-PARC Facility (KEK/JAEA)

South to North

Hadron Exp.

Facility

Status (before the Earthquake)

Competition with Double Chooz, Diya Bay, FNAL, etc.

Indication of v_e appearance (non-zero θ_{13}) 6 v_e candidates found!

Prob. of 6 are all BG: 0.7% (2.5σ equiv)

 $(\Delta m_{23}^2 > 0)$ 0.03 < sin²2 θ_{13} < 0.28 90%CL range

 $sin^2 2\theta_{13} = 0.11$

Central value

assuming $\Delta m^2_{23}=2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23}=1$, $\delta_{CP}=0$

Selected to Physics World Top 10 Breakthroughs (England) in 2011 http://physicsworld.com/cws/article/ news/48126

5σ Results

Neutron Instruments at Materials and Life Science Facility

Proposals and Approvals

Every year the number of proposals are increasing

- Highlights before March 11, 2011 (Earthquake)
 - Beam power has been steadily increasing: 200 kW for 3 GeV RCS and 145 kW for Main Ring at 30 GeV.
 - 400kW long-run test completed. Goal is 1 MW.
 - Neutrino Facility: Started to take data at Super Kamiokande. 6 electron-neutrino events were detected. Possibility of large θ_{13} . Encouragement to go to CP measurement.
 - Hadron Facility: About ready to run for many experiments.
 First data for penta-quark search were completed.
 - Materials and Life Facility: Neutron and muon beams already produced many fruitful data and the results are being published.
- Need more and serious efforts towards "internationalization".
- Also, need more effort toward "industrial usage".

Status (after the Earthquake)

LINAC

3 GeV Synchrotron (RCS)

50 GeV Synchrotron (MR)

Materials & Life Science Experimental Facility (MLF)

Immediately after the Earthquake

Neutrino & Hadron Experimental Facilities

All the J-PARC members worked hard and coherently to attain the December Recovery.

December 9, 2011

3 days before the target date

14:00 Beam went throughout the Linac at 3 MeV with RFQ acceleration.

09:30 Key was on.

Nov. of 2006. The first beam was on at the Linac.

300000

Linac and 3 GeV

Final vacuum leakage test

Linac Alignment

Beam to 3 GeV: December 17

Attained to 300 kW: December 21

Neutron on the Target

Old and New Targets

Unfortunately, the bubbler is not working properly, so that the neutron beam line can accept 100 kW at the time of first beams.

Neutrino Events

Beam to 50 GeV: December 22 Beam to Neutrino: December 24

First Beams to Hadron (1/28/12)

Beam adjustment process.

Beam at the Target

Beam=BH1⊗BH2 Beam⊗TOF Beam⊗LC⊗AC^{bar}⊗TOF Veto=TOF⊗AC

Run Plan

- No Tsunami Effect
 - We prepared up to 8 m Tsunami.
- Main Buildings were almost OK
 - Many underpins for major buildings.
- However, many utility buildings, roads, and extended buildings had significant damage.
- When to recover ?
 - Aiming at recovering by the end of 2011 (Done).
 - Expect to run about 2 mo. in JFY2011 (Done).
 - Obtained permission from TEPCO for 55 MW.
- Operation of JFY2012 (starting 4/1/2012)
 - Planned 8 cycle (~180 day) operations for users.

Accelerator Performance and the Future

Beam Power at the Neutron (RCS)

Linac (330m)

New Ion Source

New RFQ

New Ion Source

New RFQ

New RFQ

2012.3: ACS construction 19 out of 21 completed

Klystron

High power radio frequency device

3 GeV RCS

3 GeV Synchrotron (350m)

Stabilization of Kicker Magnet

Earthquake Effect on RCS

Beam loss at 400 kW for the RCS

J-PARC

Budget for the Linac and the RCS upgrade has been secured.

50 GeV MR

50 GeV Synchrotron (1600m)

Special lattice structure to avoid transition energy.

Also, accelerating 100 tera protons/pulse

Mid-Term Plan for MR

	2011	2012	2013	2014	2015	2016	2017
Magnet power supply							
R&D and prototypes	↓						
Manufacture and installation				+		\rightarrow	
Infrastructure			+			\rightarrow	
RF							
#9 RF system (FT3M type)	4	\rightarrow					
R&D of FT3L cavity	•		▶				
Manufacture and installation (FT3L type)						\rightarrow	
Injection and Fast extraction							
Injection kicker & septum upgrade	+						
FX kicker & septum upgrade							
Collimator upgrade							
Additional collimators	•						
Additional shields	ł		\rightarrow				
SX upgrade							
SX collimator	•		→				
Titanium chambers		←	\uparrow				
Expected beam power for FX [kW] *	100	200	300	400			→ 750
Expected beam power for SX [kW] *	3	10	50	Т	oward 10	> 100	

* Powers shown in this table are expected powers after each summer shutdown period.

ПП

Summary

- Unique Accelerator Project Multi-purpose facility
 - World class proton facility \rightarrow Variety of secondary beams \rightarrow Multipurpose
 - Broad fields in Science (materials and Life, Nuclear and Particle, Nuclear Industrial, etc.) → Interdisciplinary facility
- Major Issues for Coming 5 Years
 - The first priority: To achieve 1 MW at 3 GeV RCS and 0.75MW for Main Ring (MR).
 - Experimental devices for hadrons and muons must be expanded.
 - Nuclear transmutation (ADS) must be initiated.
 - Infra Structure, such as main research building, radioactive handling room, lodging for users, etc. must be prepared or expanded.
 - Internationalization and Open to industries
- Major Goal: Production of Top-Level Scientific Results
 - Production of world leading results.

Future Five Years (Review by MEXT)

Presented in May 14, 2012

Thanks