

Beam Commissioning and Operation of New Linac Injector for RIKEN RI Beam Factory

RIKEN Nishina Center

<u>Kazunari Yamada</u>, K. Suda, S. Arai, M. Fujimaki, T. Fujinawa, H. Fujisawa, N. Fukunishi, Y. Higurashi, E. Ikezawa, H. Imao, O. Kamigaito, M. Kase, M. Komiyama, K. Kumagai, T. Maie, T. Nakagawa, J. Ohnishi, H. Okuno, N. Sakamoto, H. Watanabe, T. Watanabe, Y. Watanabe, H. Yamasawa, Y. Sato (J-PARC center, KEK), A. Goto (NIRS)

Subject of RIKEN Nishina Center

•RI beam factory (RIBF)

Producing the world's most intense RI beams over the entire range of atomic masses by powerful heavy ion beams accelerated up to $v/c \approx 0.7$ (U beam has a first priority)

•Synthesis of super-heavy elements (SHEs)

Role of new linac injector RILAC2

Independent operation of RIBF experiments and SHE research
Intensity upgrade of U, Xe beams

d, α , ¹⁸O beam (RILAC-RRC-IRC-SRC)

1 pμA (6×10¹² particles/s, max. 6.2 kW) → Attained a goal of RIBF

⁴⁸Ca beam (RILAC-RRC-IRC-SRC)

230 pnA (3.8 kW) ⇒ Best in the world

²³⁸U beam (RILAC-RRC-fRC-IRC-SRC)

0.8 pnA (2009/12)

⇒ Insufficient

Deficiency of beam current from an ion source
Deterioration of RILAC (over 30 years old)
→ vacuum leak, rf instability

Key features of RILAC2

Key features of RILAC2

CW 4-rod RFQ linac

Recycled a 4-rod RFQ linac kindly provided by Kyoto University.

Frequency	36.5 MHz
Duty	100 %
<i>m</i> /q ratio	7
Input energy	3.28 keV/u
Output energy	100.3 keV/u
Input emittance	200π
input emittance	mm∙mrad
Vane length	225.6 cm
Intervane voltage	42.0 kV
Mean aperture (r_0)	8.0 mm
Max. modulation (<i>m</i>)	2.35
Focusing strength (B)	6.785
Final synchronous phase	-29.6°
Unloaded Q	5000
Shunt impedance	~50 kΩ
Required rf power	~18 kW

Resonant frequency f_0 : 33.8 MHz \rightarrow 36.5 MHz m/q \approx 7 ions accelerated to 100 keV/u without changing vane electrodes. Unloaded Q : 5400 \rightarrow 5000 (measured)

Drift-tube linacs

Low-β: 0.015~0.038
CW-QWR, 36.5 MHz
Directly coupled with rf amplifier for saving space and cost

Frequency \longleftrightarrow Load impedance (Resonator) _{Coupling} (coupler, amp.)

Carefully set the target frequency

DTL1 model of MWS

	DTL1	DTL2	DLT3
Frequency (MHz)	36.5	36.5	36.5
Duty (%)	100	100	100
<i>m/q</i> ratio	7	7	7
Input energy (keV/u)	100	220	450
Output energy (keV/u)	220	450	680
Length (cm)	80	110	130
Height (mm)	1320	1429	1890
Gap number	10	10	8
Gap length (mm)	20	50	65
Gap voltage (kV)	110	210	260
Drift tube aperture (mm)	17.5	17.5	17.5
Peak surface field (MV/m)	8.9	9.4	9.7
Synchronous phase (deg.)	-25	-25	-25

RF fluctuation of RILAC2 over one day

Time ; 24 h

Voltage stability : $< \pm 0.1\%$ Phase stability : $\sim \pm 0.1^{\circ}$

Sufficient to attain the target values

Successfully commissioned on schedule

First beam of RILAC2

Beam profile measured by a wire scanner.

Decision of operation parameters

Started with parameters of designed value.

Parameters were made fine adjustments to increase beam transmission by measuring the beam current.

Parameters are consistent with designed value.

Beam loss caused by electron capture reactions

Loss of the uranium beam occurred in each section between the bending magnets of HEBT due to low vacuum level.

 \rightarrow about 10% in each section

Beam transmission efficiency

Improved by optimizing rf parameters and improving the vacuum level

Typical 4σ emittance of uranium beam from the SC-ECRIS.

Beam energy matching

Fine tuning of injection energy to RRC is required. Beam energy from RILAC2 was decided by time-of-flight measurement and adjusted so as to obtain an optimal turn pattern of RRC.

RRC turn pattern, ¹²⁴Xe beam (2011/05)

Radial position

1/(36.5 MHz)

Timing spectra measured by plastic scintillators

Deployment of RILAC2 for RIBF experiment

RILAC2 successfully started supplying beams from October 2011.

- •2011/10/5 ~10/6 : First experiment using RILAC2 (²³⁸U 10.75 MeV/u)
- •2011/10/9 ~12/8 : First RIBF experiment (²³⁸U 345 MeV/u)
- •2011/12/8 ~12/19 : RIBF experiment (124Xe 345 MeV/u)

Summary

•New linac injector RILAC2 has been successfully commissioned in 2011.

 Independent operation of RIBF experiments and the SHEs research becomes possible.

•Intensity of very heavy ions such as U and Xe are increasing reliably.

<u>Refs</u>

•To produce the world's most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

Entire view of RIBF

•To produce the world's most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

•To produce the world's most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

H. Imao et al., THPPP084.

Entire view of RIBF

•To produce the world's most intense RI beams over the entire range of atomic masses using heavy ion beam accelerated up to $v/c \approx 0.7$

H. Imao et al., THPPP084.

Entire view of RIBF

Ring cyclotrons

- Part			RRC	fRC	IRC	SRC
-	fRC	K-number	540	570	980	2600
		(MeV)				
		Sector magnets	4	4	4	6
Bar		Velocity gain	4.0	2.1	1.5	1.5
	IRC	Trim coils	26	10	20	4(SC)
		(/sector)				22(NC)
		RF resonators	2	2+FT	2+FT	4+FT
	SRC	Frequency range (MHz)	18-38	54.75	18-38	18-38

- SC = superconducting
- NC = normal conducting
- FT = flat-top resonator

Acceleration mode at RIBF

Variable-energy mode : α, ¹⁸O, ⁴⁸Ca, ⁸⁶Kr up to 400 MeV/u @SRC

Fixed-energy mode : ²³⁸U, ¹²⁴Xe 345 MeV/u @SRC

Light ion mode : Pol-d, ¹⁴N 250-440 MeV/u @SRC

Present acceleration mode at RIBF

0.1° phase difference on DTL3 ⇒ 0.08% voltage difference on DTL3

 $\Delta V 0.1\%$ on DTL3 $\rightarrow \Delta \phi \sim 4^{\circ}$ @ injection of RRC $\rightarrow \Delta r \sim 3.7$ mm @ extraction of RRC (Turn separation @ extraction of RRC : 6.7 mm)

Û

Critical degradation of extraction efficiency

Modification of RFQ

uminum test block

(Cold model)

240 mm × 260 mm × 114 mm

f₀: 36.5 MHz Block size: Put a block tuner into every gap between the posts
 → Size of block was optimized by 3D EM calculation (MWS) and cold-model test

Measured (original RFQ) f₀:33.5 MHz[not modulated vane] f₀:33.8 MHz[modulated vane]

RFQ model for MWS calculation

(7 M meshes)

Calculation (not modulated vane) $f_0:33.2 \text{ MHz} (-0.9\%)[w/o block]$ $f_0:36.0 \text{ MHz} (-1.5\%)[with block]$

Required rf power@42kV:17.5 kW (80%-Q) Rf amplifier : 40 kW max.

Detailed design of block tuner

- Heat load of five block tuners: ~2.1 kW@42 kV
- Cooling of block (assumed as φ11.6 mm, 4.85 m, 50 bend)
 Cooling water 18 L/min(inlet 0.5 MPa, outlet 0.2 MPa)
 Water temp. ~2 °C up, inner surface temp. ~1 °C up
- Weight saving : 64 kg→33 kg
- -3D CAD drawing (Autodesk inventor)

Block tuner made of oxygen free copper

Test of RFQ linac

Block tuner

Connection pipe for cooling water

02 Sep, 2010 @ AVF cyclotron vault

High power test (pulse)

S11 result of RFQ

Frequency: 36.5 MHz Loaded-Q : 2500 (S21)

High power test (CW)

Assembly : performed in March 2010

- •Vacuum test : acceptable (< 8×10^{-6} Pa)
- •Resonant frequency : corresponds to 36.5 MHz
- Low-level circuits & rf amplifier : ready

•High power test : <u>achieved the rated voltage of 42 kV!!</u>

Drift tube linac

- •DTL1, 2 : new fabrication
- •DTL3 : modify CSM-D1 tank
- •CW-QWR
- •Low- β : 0.015~0.038
- 1.1 ∼1.2 Kilpatrick
- Direct coupling scheme for saving cost and space

	A/cm W/cm ² 82.0 5.30 79.4 4.97		DTL1	DTL2	DLT3
f0 36.64 MHz Q0 17400 Prb 113.MO	69.2 3.77 64.1 - 3.23	Frequency (MHz)	36.5	36.5	36.5
Voltage 240 kVp Power 25 kW (100% Q)	58.9 - 2.74 53.8 - 2.28 48.7 - 1.87	Duty (%)	100	100	100
Tee Surface Qurrent (seal)	43.6 - 1.50 38.4 - 1.16	<i>m/q</i> ratio	7	7	7
	33.3 - 0.87 28.2 - 0.63 23.1 - 0.42	Input energy (keV/u)	100	220	450
	17.9 - 0.25 12.8 - 0.13	Output energy (keV/u)	220	450	680
	2.6 0.01	Length (cm)	80	110	130
		Height (mm)	1320	1429	1890
		Gap number	10	10	8
		Gap length (mm)	20	50	65
		Gap voltage (kV)	110	210	260
		Drift tube aperture (mm)	17.5	17.5	17.5
Monitor Mode I Component Abs Maximum-3d 5961,53 A/r at 47,8681 / -249,746 / 312,201 Freeservor 2, 82,632		Peak surface field (MV/m)	8.9	9.4	9.7
Surface current of DTL1 (MWS : 10M meshes)		Synchronous phase (deg.)	-25	-25	-25

Kilpatrick limit

at tens MHz

30

20

E-field (MV/m)

40

50

0

10

Frequency (MHz)

Design of DTL tanks

- Direct coupling scheme
- → resonant frequency decreases because of their series/parallel capacitance
- Target frequency was adopted such that this decrease was compensated
- The decrease was estimated to be -225 kHz by comparing measurement and MWS calculation

CST

Test result of DTL tanks

For three tanks

- •Resonant frequency : conformable to designed value 36.5 MHz
- High power test : achieved the rated voltage

Measured characteristics

	DTL1	DTL2	DTL3
Frequency range (MHz)	35.64— 36.87	35.5—36.8	36.25—36.69
Unloaded Q	13000	20350	22500
Shunt impedance (M Ω /gap)	0.94	1.65	1.72
Effective shunt impedance (M Ω /m)	135	176	102
Required rf power (kW)	6.5	13.4	19.6

Pick-up signal

Perturbation measurement

Rebunchers

REB1

- •QWR
- •f₀: 36.5 MHz
- • β : 0.0147, $\beta\lambda/2$: 60 mm
- Rated voltage : 100 kV total
- •Gap number : 4
- •Gap length : 20 mm, 10 mm
- Drift tube aperture : 17.5 mm
- •Q₀:8500 (MWS)
- -Shunt impedance : 550 kΩ (MWS)
- •Required rf power : 570 W (100%-Q)
- •Power amp. : 1 kW max.

REB2

- •QWR
- •f₀: 36.5 MHz
- β : 0.0382, $\beta\lambda/2$: 156 mm
- •Rated voltage : 200 kV total
- •Gap number : 4
- -Gap length : 20 mm
- Drift tube aperture : 20 mm
- •Q₀: 11400 (MWS)
- -Shunt impedance : 950 kΩ (MWS)
- Required rf power : 1500 W (100%-Q)
- •Power amp. : 3 kW max.

REB2 design

530

Pictures : fabrication and installation

RILAC2 beam commissioning

Date	Machine studies, events
Dec. 17, 2010	Construction of RILAC2 was finished.
Dec. 21, 2010	Beam commissioning was begun using ¹²⁴ Xe ²⁰⁺ .
	First beam.
Dec. 22, 2010	RILAC2 solo acceleration test using ¹²⁴ Xe ²⁰⁺ .
Jan. 21, 2011	RILAC2 solo acceleration test using ¹²⁴ Xe ²⁰⁺ .
Jan. 24 — Feb. 11, 2011	Installation and test of a rebuncher2.
Feb. 14 —16, 2011	RILAC2-RRC-fRC acceleration test using ¹²⁴ Xe.
May. 7 — 21, 2011	RILAC2-RRC-fRC-IRC-SRC, ¹²⁴ Xe beam was extracted from SRC.
Jun. 15 — 30, 2011	RILAC2-RRC-fRC, first acceleration test of ²³⁸ U.
	Test of charge stripper.
Aug. 26 — 29, 2011	RILAC2-RRC acceleration test using ²³⁸ U.
Sep. 24 — 26, 2011	RILAC2-RRC acceleration test using ²³⁸ U.
	Test of charge stripper.
Oct. 5, 2011 —	Supplying beams for experiments.

