Beam-beam Limit in Hadron Colliders

K. Ohmi **KEK ACCL IPACI2**, New Orleans, 20-26 May, 2012

Thanks to Y. Alexahin, W. Fischer, W. Herr, V. Lebedev, T. Sen, R. Tomas, A. Valishev, D. Zhou, F. Zimmermann

Beam-beam tune shift (tune shift due to beam-beam interaction)

$$\xi = \frac{N_p r_p \beta^*}{4\pi \gamma \sigma_r^2}$$

Luminosity

N_p:proton bunch population β^* : beta function at IP σ_r : beam size f_{rep}: collision repetition

$$L = \frac{N_{p_1} N_{p_2}}{4\pi \sigma_r^2} f_{rep} = \frac{N_p \gamma f_{rep}}{r_p \beta^*} \xi_{IP} \qquad \qquad \xi_{IP} = \frac{1}{2} \xi_{IP} =$$

Beam-beam limit

- Beam-beam tune shift is saturated for increasing the bunch population: i.e. emittance growth arises. Luminosity increases proportional to $N_{\rm p}$ not $N_{\rm p}^2$.
- Emittance growth, which results luminosity degradation, arise (even keeping current).
- Short beam life time at collision. We do not discuss here.

 $= \frac{r_p \beta^* L}{\gamma_n N_{\bar{n}} f_{col}}$

rable 1. Sammary of Froton connucts.			
	Tevatron	RHIC	LHC
Circumf. (m)	6,283	3,834	26,658
Energy (GeV)	980	250	3,500
Emit. (µm)	20(p)/4(pbar)	20	2
beta*	0.28	0.6	1.0
Bunch length (m)	0.48	0.6	0.38
Tune (x/y/z)	20.577/20.570 /0.0007	28.67/29.68 /0.00036	64.31/59.32 /0.0019
Bunch population	2.9x10 ¹¹ (p) 1.1x10 ¹¹ (pbar)	1.65 x10 ¹¹	1.9x10 ¹¹
Number of bunches	36	107	1380
Beam-beam parameter	0.03/2IP	0.005/IP	0.034*/2IP
Lumi. (cm ⁻² s ⁻¹)	4.1x10 ³²	1.45×10^{32}	3.6x10 ³³
* Beam-beam parameter for LHC is obtained in a dedicate experiment [2].			

Table 1: Summary of Proton colliders.

Tevatron

Initial Luminosity vs (Proton Intensity * Pbar Intensity)

Collision between 36x36 bunches.

LHC 3.5GeV

Observations: head-on beam-beam effects I

First dedicated experiment with few bunches

Test maximum beam-beam parameter (at injection energy) - head-on only

Intensity 1.9 · 10¹¹ p/bunch

 \blacktriangleright Emittances 1.1 - 1.2 μ m

Achieved:

 $\xi = 0.017$ for single collision (≈ 5 times nominal !)

 $\xi = 0.034$ for two collision points (IP1 and IP5)

No obvious emittance increase or lifetime problems during collisions (maximum ξ not yet found)

△ No long range encounters present !

The unattainable, here becomes action

• Courtesy W. Herr, presentation at Chamonix 2012.

Study how high beam-beam parameter can be achieved Possible mechanism for the luminosity degradation

- Crossing angle and offset
- IR coupling, dispersion, chromaticity
- IR nonlinearity
- Long range beam-beam and lifetime
- Coherent instability
- External noise
- Physical aperture, squeezing beta...

Parameters Target high luminosity LHC

- Focus single bunch beam-beam limit
- E=7 TeV, ϵ =2.7x10⁻¹⁰ m ($\gamma \epsilon$ =2 μ m).
- β*=0.55 m, σ_z=0.0755 m.
- $(v_x, v_y, v_z) \sim (64.31, 59.32, 0.0019)$
- $N_{P}=1.68\times10^{11}$ (x2, x2.5, x3...)

 ξ_{tot} =0.02, 0.04, 0.05, ...

• 2 IP, Super-periodicity

 $\xi = \frac{N_p r_p \beta^*}{\Lambda \pi \gamma \sigma^2}$

Beam-beam limit in a simple toy model

• Round beam+linear arc represented by 6x6 matrix

$$\Delta p_r = \frac{2N_p r_p}{\gamma} \frac{1}{r} \left[1 - \exp\left(-\frac{r^2}{2\sigma_r^2}\right) \right]$$

$$\Delta p_z = \frac{N_p r_p}{\gamma} \frac{1}{\sigma_r^2} \exp\left(-\frac{r^2}{2\sigma_r^2}\right) \frac{d\sigma_r^2}{dz}.$$

$$M = \begin{pmatrix} M_x & 0 & 0\\ 0 & M_y & 0\\ 0 & 0 & M_z \end{pmatrix} \qquad M_i = \begin{pmatrix} \cos \mu_i \\ -\sin \mu_i / \beta_i \end{pmatrix}$$

- weak-strong model
- Tracking 10⁶ turns
- 2 IP, Super-periodicity 2:

Breaking superperiodicity degrades the performance in the most case.

$\beta_i \sin \mu_i$ $\cos \mu_i$

- $\Delta L/L_0 = -1 \times 10^{-9}$: I day luminosity lifetime
- The beam-beam limit is 0.2!? High integrability, an equal tune in a round beam or $v_x=0.5+\alpha$ in a flat beam.

- This is not surprising, because the system is approximately two degree of freedom (r-s) or (y-s).
- Similar result is obtained in e+e- colliders for $v_x=0.5+\alpha$ with crossing angle zero.

K. Ohmi et al., EPAC06, MOPLS032

- 7-th order resonances appear.
- Diffusive zone correspond to 7-th order resonances appears.
- Symmetry breaking for x (offset) or p_x (crossing).

Taylar map analysis

- Taylar map is obtained for the simple beam-beam model.
- The map is factorized by $M \exp(-: H:)$
- Fourier expansion for the betatron phase.

$$H = H_{00}(J_x, J_y) + \sum_{m_x, m_y} G_{m_x, m_y}(J_x, J_y) \exp(m_x \phi_x + m_y \phi_y)$$

$$\begin{split} H_{00}(J_x,J_y) &= 2.01375 \times 10^{42} J_x^6 + 1.21356 \times 10^{43} J_x^5 J_y - 4.82225 \times 10^{33} J_x^5 \\ &+ 2.79527 \times 10^{43} J_x^4 J_y^2 - 2.2716 \times 10^{34} J_x^4 J_y + 1.14155 \times 10^{25} J_x^4 \\ &+ 1.29819 \times 10^{44} J_x^3 J_y^3 - 7.27118 \times 10^{34} J_x^3 J_y^2 + 4.63551 \times 10^{25} J_x^3 J_y \\ &- 2.70542 \times 10^{16} J_x^3 + 1.66781 \times 10^{44} J_x^2 J_y^4 - 1.48894 \times 10^{35} J_x^2 J_y^3 \\ &+ 1.18738 \times 10^{26} J_x^2 J_y^2 - 8.66053 \times 10^{16} J_x^2 J_y + 6.10249 \times 10^7 J_x^2 + 1.79409 \times 10^{44} J_x J_y^5 \\ &- 1.71884 \times 10^{35} J_x J_y^4 + 1.68734 \times 10^{26} J_x J_y^3 - 1.57801 \times 10^{17} J_x J_y^2 + 1.36494 \times 10^8 J_x J_y \\ &+ 1.07216 \times 10^{44} J_y^6 - 1.2051 \times 10^{35} J_y^5 + 1.3982 \times 10^{26} J_y^4 - 1.59505 \times 10^{17} J_y^3 \\ &+ 1.74099 \times 10^8 J_y^2 \end{split}$$

 $\begin{array}{l} 0^{36} + 3.66357 \times 10^{37} i) J_x^{7/2} J_y^2 \\ 993 \times 10^{37} i) J_x^{9/2} J_y \\ 798 \times 10^{28} i) J_x^{7/2} J_y \\ 54337 \times 10^{36} i) J_x^{11/2} \\ 1 \times 10^{28} i) J_x^{9/2} \\ 787 \times 10^{19} i) J_x^{7/2} \end{array}$

Resonance line and width

• Resonance line in J space

$$m_x \left(\nu_{x0} + \left. \frac{\partial H_{00}}{\partial J_x} \right|_{J=J_R} \right) + m_y \left(\nu_{y0} + \left. \frac{\partial H_{00}}{\partial J_y} \right|_{J=J_R} \right) = n$$

- Resonance width $\Delta J_x = 2m_x \sqrt{\frac{G_{m_x,m_y}}{\Lambda}} \qquad \Lambda = m_x^2 \frac{\partial^2 H_{00}}{\partial J_x^2} + m_x m_y \frac{\partial^2 H_{00}}{\partial J_x \partial J_y} + m_y^2 \frac{\partial^2 H_{00}}{\partial J_y^2}$
- Similar behavior as FMA y/σ_y

emittance growth

IR Quadrupole nonlinearity

- Triplet of IPI, MQXA.IR(L)I, MQXB.A2R(L)I, MQXB.B2R(L)I, MQXA.3R(L)I
- Multipole components of these magnets are dominant for the limit of the dynamic aperture.
- Kinematic term and fringe field was negligible in LHC.
- Study with a model containing the 8 IR magnets.

IR triplet

Incoherent emittance growth in strong-strong simulation

- The luminosity decrement depends on the macro-particle statistics. The statistical offset noise degrade the luminosity artificially.
- The difference due to the static offset is seen.
- Simulation with high statistics is necessary. it is possible but consuming.

Coherent beam-beam instability

- Strong-strong simulation (BBSS)
- Vertical tune scan with keeping $v_x = 0.3^{3}$
- Coherent instabilities are seen above integer and half integer, π mode instability.
- Instability is seen $v_y=0.38$

External noise II

• Weak-strong model, in which strong beam modulates with $\delta x/\sigma_x$ and $\delta y/\sigma_y$, is used.

$$\langle \delta J^2(J) \rangle = \frac{\left(\frac{N_p r_p}{\gamma_p} \delta x\right)^2}{8 - 4/\tau_{cor}} \sum_{k=0}^{\infty} \frac{\sinh \theta (2k+1)^2 G_k^2 (J/2\varepsilon)}{\cosh \theta - \cos 2\pi (2k+1)\nu_x} \qquad \text{by T.}$$

Quadratic dependence on $\partial x/\sigma_x$ and ξ .

- Critical noise amplitude, 0.02% for $\xi = 0.04 0.05$.
- Strong beam G=I, weak beam G=0 in the Alexahin's model. K=0.023-0.4 at $\delta x/\sigma_x = 0.01$.

Sen

Intrabeam

- Emittance growth time is 105 hours (hor.)for the nominal LHC, $\varepsilon = 5 \times 10^{-10}$ m, and N_p=1.15×10¹¹.
- The growth time is 40 hour for ξ tot=0.02 (ϵ =2.7x10⁻¹⁰ m, and $N_p = 1.63 \times 10^{11}$). It is 16 hour for ξ tot=0.05, when Np/ ϵ x2.5
- Incoherent fluctuation directory causes an emittance $\frac{\delta\varepsilon}{\varepsilon} \approx \frac{\delta x^2}{\sigma_x^2}$ growth.
- Fluctuations give unexpected emittance growth in a nonsolvable case as is studied in KEKB (very high ξ >0.1).

Summary and conclusions

- We discuss the beam-beam limit in LHC with every possible mechanism.
- The results show a hurdle $\xi_{tot} \sim 0.035 0.05$ for offset error or crossing angle.
- The superperiodicity, assumed in this presentation, is breaking in LHC. More resonances appear. π separation is worse than Superperiodicity 2 in my experience.
- Is ξ_{tot} >0.05 possible? Probably yes, if perfect machine is constructed. Squeeze beta, aperture, superperiodicity, lattice nonlinearity, one more collision point...
- Sensitivity for errors and noises increases $\sim \xi_{tot}^2$. $\delta x/\sigma_x \sim 0.02\%$ is tolerance for fast turn-by-turn noise.

Thank you for your attention

Diffusion in the head-on collision

- Radiation excitation enhances beam enlargement.
- In Gaussian model, enlargement is small.
- Accuracy of PIC is excellent as far as diffusion.

