

SUPERCONDUCTING RESONATORS DEVELOPMENT FOR THE FRIB AND ReA LINACS AT MSU: RECENT ACHIEVEMENTS AND FUTURE GOALS

 <u>A. Facco</u>^{#+}, E. Bernard, J. Binkowski, J. Crisp, C. Compton, L. Dubbs, K. Elliott, L. Harle, M. Hodek, M. Johnson, D. Leitner, M. Leitner, I. Malloch, S. Miller, R. Oweiss, J.
 Popielarski, L. Popielarski, K. Saito, J. Wei, J. Wlodarczak, Y. Xu, Y. Zhang, Zh. Zheng, Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 USA

A. Burrill, K. Davis, K. Macha and T. Reilly, JLAB, Newport News, Virginia

+ INFN - Laboratori Nazionali di Legnaro, Padova, Italy

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Facility for Rare Ion Beams

FRIB Driver Linac

- •Output beam energy above 200 MeV/u
- •Accelerate heavy ion beams up to uranium
- •Beam power on target 400 kW, with 90% beams within 1 mm diameter
- •It is necessary to accelerate 2 to 5 charge states simultaneously to reach the power goal
- •In campus nuclear facility, sustain low beam loss and residual activation

FRIB Driver Facts

- The largest **superconducting low-β linac** worldwide
- The first one working at 2 K
- Heavy ion beams of different A/q and multi-charge beam transport capability
- High beam current (0.66 mA)
 - beam loading in the kW range, large beam aperture, high reliability in operation
 - High performance to fulfill realistic specifications
- >400 cavities to be built: low cost of resonators is mandatory

FRIB Driver Linac: 330 SRF Resonators

FRIB resonators design guidelines

- high performance at low cost
 - Simplified geometries
 - Minimum number of ebw
 - No bellows
 - Thin Nb sheets
 - Ti He vessel, TIG welded
 - BCP surface treatment, no EP
- realistic design specifications
 - $R_{res} \le 11 n\Omega$
 - Df/dP≤4 Hz/mbar
 - LFD≤4 Hz/(MV/m)²
- reliable operating conditions
 - $E_p \leq 35$ MV/m, $B_p \leq 70$ mT
 - Operation at 2 (2.1) K
 - Large extra E_a available

eta_0	0.041	0.085	0.29	0.53
f(MHz)	80.5	80.5	322	322
$V_a(MV)$	0.81	1.8	2.1	3.7
E_p (MV/m)	31	33	33	26
$B_p(\mathrm{mT})$	55	70	60	63
R/Q (Ω)	402	452	224	230
$G(\Omega)$	15	22	78	107
Aperture (mm)	34	34	40	40
$L_{eff} \equiv \beta \lambda \ (mm)$	160	320	270	503

ReA3 Re-accelerator Linac

Michigan State University

A. Facco, IPAC2012, New Orleans, Slide 7

β_0 =0.41 QWR – 1 Year of Operation in ReA3

- In FRIB
 - Operation foreseen at 2 (2.1) K, with $E_p=30$ MV/m, $B_p=53$ mT
- Naked test at 2 K
 - E_p=80 MV/m, B_p=140 mT
- In ReA3
 - Operation at 4.5K, $E_p=16$ MV/m, $B_p=35$ mT successfully achieved
 - 7 cavities operating on line
 - Reliable and reproducible phase and amplitude lock
 - FRIB fields reached, but plate overheating
- Bottom ring modified for improved plate cooling

$\beta_0=0.085$ QWR – early problems, now solved

- Bad RF joint due to a subtle differential contraction problem
- insufficiently cooled tuning plate due to NbTi bottom ring
- Design successfully modified in several steps
 - Distance tuning plate-inner conductor increased
 - Rf and vacuum contacts unified
 - Rf coupler moved from the tuning plate to the side
 - New slotted tuning plate for increased range

ReA3 β=0.085 refurbished QWR performance

- The 2 prototypes of ReA3 cavity largely exceeded the FRIB goals both at 4.2K and 2K
 - Resonators exceeded E_p=50 MV/m and B_p=120 mT
 - Q disease completely eliminated by 600° C baking
 - Flat Q at 2K up to $E_p>40$ MV/m and $B_p>90$ mT
- 9 existing QWRs are being refurbished for ReA3

4.2K Performance Enhancement with Low Temperature Baking

- Low temperature baking at 120° C under development at FRIB
- Applied to a QWR cavity
 - at 4.2 K significant improvement in Q
 - At 2 K modest improvement
- The treatment will be applied to ReA QWRs working at 4.5 K
- Extension to all FRIB cavities is under evaluation but not in the baseline processing plan
- Treatment of FRIB cavities showing Q slightly below specifications at vertical test is being considered fast procedure for cavity recovery

A. Facco, IPAC2012, New Orleans, Slide 11

80.5 MHz, β=0.085 ReA3 Cryomodule

- Refurbishment of 10 existing ReA3 cavities
- ReA3 cryomodule under construction
 In operation in 2012
 - In operation in 2012
- New cryomodule with upgraded QWRs in 2013
 - FRIB cryomodule prototype in ReA3

FRIB QWRs solutions

Outer Conductor Inner Conductor Acid Bath

Final cavity tuning

- \pm 50 kHz spread in final f after construction
- Differential etching if needed (±100 kHz)
- Adjustable tuning puck welded after bulk etch and heat treatment (±30 kHz)

322 MHz HWRs Prototypes

β₀=0.53 prototypes from 2 different vendors reached FRIB specifications

 $V_{acc}=3.7$ MV, $E_p=31$ MV/m, $B_p=77$ mT

- Results confirmed at Jlab
- Possibility for improvements detected in 1st generation HWR prototypes:

 B_p/E_a reduction

- » Elimination of Ti bellows in He vessel
- » Simplification of cavity welding procedure

2° sound test: cavities limited by B_p

Prototype β=0.53 HWR Results Confirmed at JLab

- Test repeated at JLab
 - Verified calibration
 - Verified cavity performance
 - Verified cavity treatment
- FRIB specifications exceeded with a comfortable margin
- Rres<5 nohm up to 90 mT</p>
- 120° C baking ineffective at 2K
- JLab is developing procedures for performing FRIB cavity treatment, assembly, and qualification

We have redesigned production cavities with lower B_p/E_a , shifting the B_p from 77 mT to 63 mT and achieving larger technical margin

Technology Demonstration Cryomodule Testing

Aim

- Develop HWR cryostat assembly procedures
- Test prototype β =0.53 cavities with final couplers and in the presence of a SC solenoid
- Cryogenic test of the module prototype

Components

- 2 β =0.53 HWRs already tested off line in VTA
- 1 superconducting solenoid
- 2K test ongoing

TDCM cold mass

TDCM installed in test bunker

Phase and amplitude stability of HWR locked at low field at 2K

FRIB Couplers and Tuners

■ β=0.041 QWR

- Coupler: in operation; tested on line up to 1 kW, air cooling being implemented for 2 kW operation
- Tuner: in operation
- β=0.085 QWR
 - Coupler: under development by ANL (new side coupler)
 - Tuner: in operation, same as for β =0.041 QWR
- β=0.053 and β=0.029 HWR
 - Coupler: 2 prototypes under testing at 2K, R&D ongoing
 - Tuner: prototypes under testing at 2K, R&D ongoing

FRIB Resonators Design Upgrade

- Scope: operation with higher gradient and larger safety margin
- Guidelines:
 - New cavities fitting the present cryostats (flange to flange distance)
 - mechanical design resembling the previous ones, sharing the same tuners and couplers as much as possible
 - peak magnetic fields reduced to increase safety margin on gradient: B_p≤70 mT and E_p≤35 MV/m for all cavities (old B_p: 77 mT)
 - Increased shunt impedance to allow operation at higher gradient without exceeding the specified cryogenic load
- All these conditions could be fulfilled by increasing the cavities diameter and modifying the mechanical design, but keeping the original design concept

Production Cavities: Increased Performance

- Increased performance: lower E_p & B_p, higher R_{sh}
- Increased aperture of QWRs from 30 to 34 mm
- Increased operation E_a: the FRIB driver linac could be shortened by 2 cryomodules
- FRIB operation gradient now more conservative, with B_p≤70 mT, E_p≤35 MV/m

cavity	E _p /E _a %	B _p /E _a %	R _{sh} %	E _a %
QWR085	-9%	-11%	+38	+10
HWR29	-3%	-28%	+47	+10
HWR53	-17%	-19%	+13	(+6)

Production cavities increase in performance and baseline E_a

FRIB and ReA Cavity Surface Treatment

Effective surface treatment developed

Steps

- 1. Degrease cavity: Ultra-sonic clean with agent (Micro 90), rinse with DI water
- 2. Buffered chemical polish & rinse:150 microns removal (bulk BCP), UPW rinse
- 3. (if needed: differential etching in QWRs for frequency tuning)
- 4. Hydrogen degas: 600° C for 10 hours vacuum furnace
- 5. Degrease cavity & components:Ultra sonic clean Micro 90
- 6. Light BCP & high pressure rinse (HPR): 30 micron removal, UPW rinse
- 7. (If needed: 120° C baking for 48 hours)
- 8. Assemble to test insert

Special procedures

- 1. Optimized acid circulation for homogeneous Nb removal
- 2. Temperature stabilized BCP, cavity water cooled during processing
- 3. Liquid particle count during HPR for cleanliness control
- 4. Surface particle count after HPR and drying

Cavities resulting nearly field emission free, high Q, high E_p and B_p

L.Popielarski WEPPC065

WEPPC066

Cavity Surface Treatment

BCP setup

Optimized BCP flow

HV furnace for 600° C baking

HWR 120° C bakeout setup

Liquid (left) and surface particle count for HPR water and resonator cleanliness monitoring

Experimental R_{res} in prototypes vertical test

- $R_{res} < 5 n\Omega$ measured in prototypes for $B_p \le 70 mT$
 - Cavity surface treatment now mature and mastered
- Specified residual resistance in operation at 2 K: R_{res} ≤11 nΩ
 - This value is consistent with our vertical test experimental data

Cavity β	0.041	0.085	0.29	0.53
operation B _p (mT)	55	70	60	63

Residual surface resistance R_{res} vs. B_p measured in the FRIB prototypes at 2K

Cold Mass Assembly Cycle

Window end assembly & vacuum components - vendors

Ti rails & clean room cart - vendors

Cavity – Certified From vertical test

Fundmental power Couplers – received ready to install Solenoid (vendor) – cleaned at MSU

Window end assembly & vacuum components - vendors

FRIB Cold Masses

Cavity Processing and Testing Infrastructure

- Upgraded capability in the production phase from 2013
 - 5 cavities per week processed and tested
 - 2 cryomodule per month delivered and tested (1.5 average during production)

Cryomodule prototyping

FRIB

A. Facco, IPAC2012, New Orleans, Slide 26

FRIB Cryomodules

322 MHz, β = 0.53 Cryomodule

- New, bottom-up design
- 2K for resonators, 4.2K for SC Solenoids
- Same design scheme for all resonators

FRIB Cavity Production Schedule

Quarter Wave Resonators Type **Development Run Pre-Production Run** 10% TOTAL spare FRIB LINAC excess (with helium vessel) (with helium vessel) FY2011 - FY2012 FY 2012 - FY2013 FY2014 - FY2017 $\beta = 0.041$ 12 17 1 4 _ - $\beta = 0.085$ 2 10 **94** 126 9 11

Half Wave Resonators

Туре	Development Run (no helium vessel)	Pre-Production Run (with helium vessel)	FRIB LINAC	10% excess	spare	TOTAL
	FY2011 - FY2012	FY 2012 - FY2013	FY2014 - FY2017			
$\beta = 0.29$	2	10	76	7	2	97
$\beta = 0.53$	2	10	148	14	0	174

Conclusions

- More than 400 SRF resonators of 4 types will be fabricated for FRIB
- Prototypes have been built and tested, reaching the required E_a and Q
- FRIB-type low- β QWRs are in operation in the ReA3 linac since 1 year
- Construction techniques and surface treatment are now mature, leading to high Q, high E_a resonators nearly field emission free in test cryostats
- The cryomodule development is ongoing
 - The Technology Demonstration Cryomodule (TDCM) is under testing at 2K
 - \bullet The ReA 3 high- β QWR cryomodule is under assembly
- The resonators design has been recently reviewed and assessed for the production cavities
 - Performance increased with lower E_p/E_a , B_p/E_a and higher R_{sh} and E_a
 - The total number of FRIB cryomodules has been reduced by two
- The cavity production phase has started with the construction of of 2 cavities per type ("development run") by 2012.

Acknowledgments

We thank C. Crawford, M. Kelly, P. Kneisel, R. Laxdal and R. Webber for their precious advice

