

Accelerating Science and Innovation

Physics Results at the LHC and Implications for Future HEP Pregrammes

R.-D. Heuer, CERN

IPAC12, 25 May 2012

Past few decades

"Discovery" of Standard Model

through synergy of

hadron - hadroncolliders(e.g. Tevatron)lepton - hadroncolliders(HERA)lepton - leptoncolliders(e.g. LEP, SLC)

Test of the SM at the Level of Quantum Fluctuations

possible due to • precision measurements • known higher order electroweak corrections $\propto (\frac{M_t}{M_W})^2, \ln(\frac{M_h}{M_W})$

Key Questions of Particle Physics

origin of mass/matter or origin of electroweak symmetry breaking

unification of forces

fundamental symmetry of forces and matter

where is antimatter

unification of quantum physics and general relativity

number of space/time dimensions what is dark matter what is dark energy

Key Questions of Particle Physics

Exciting Times

At the energy frontier, the LHC brings us into unexplored territory:

Excellent progress Accelerator – Experiments – Grid Comp.

Experiments record data of high quality with high efficiency at luminosities not expected at such an early stage

F.Gianotti, RRB, 17/10/2011

Total, Elastic, Inelastic Cross-Section

W and Z physics

Probing lepton universality with accuracy comparable to PDG world average (from LEP and TeVatron) for W

LHC is already in the game for $m_{top!}$

 "Back of the envelope" calculation indicates that result will help decrease the current uncertainty from the Tevatron (partially uncorrelated systematics + higher statistics)

Headache error is color recombination – top quark is not a singlet and has « strings attached » ! (what does 'mass' mean?) LHC vs tevatron ...

Different process → different error? Or even different mass?

Moriond EW2012 EXP Summary -- Alain Blondel

Summary of main electroweak and top cross-section measurements

Good agreement with SM expectations (within present uncertainties)

Experimental precision starts to challenge theory for e.g. tt (background to most H searches)

Summary of main electroweak and top cross-section measurements $\begin{bmatrix} \hline a] 10^5 \\ \hline a] 10^5 \\ \hline a] 10^4 \\ \hline a] 10^4$

- ~ 3 M $Z \rightarrow \mu\mu$, ee events
- ~ 60000 top-pair events
- \rightarrow factor ~ 2 (W, Z) to 10 (top) more than total CDF and D0 datasets
- → will allow more and more precise studies of a larger number of (exclusive) processes

New ParticleDiscovery The $\Xi_b^{*\circ}$ involves elegant cascade that CMS tracker handles beautifully.

 $\Xi_{\mathbf{b}}^{*0} \to \Xi_{\mathbf{b}}^{-} \pi^{+} \to \Xi^{-} J/\psi \pi^{+} \to \Lambda \pi^{-} \mu^{+} \mu^{-} \pi^{+} \to p^{+} \pi^{-} \pi^{-} \mu^{+} \mu^{-} \pi^{+}$

The Interference Experiment Works!

 ${B^0}
ightarrow {{\mathsf{K}}} \pi$

 $A_{CP} = -0.088 \pm 0.011 \pm 0.008$ Most precise and first **5** σ Observation of CP violation in a hadronic machine

(b)

 B^0

 $\bar{u} \ \bar{c} \ \bar{t}$

 $\bar{s} K^+$

$$B_s \rightarrow \pi K$$

 $A_{CP} = 0.27 \pm 0.008 \pm 0.02$ First **3** σ evidence for CP asymmetry in Bs decays

Highlights of LHCb results from 2012 Winter Conferences

New experimental bounds already exclude large part of model parameter space

The "beauty" of charm

- LHCb can profit of the huge charm production cross section at the LHC (~6mb): LHC is a charm-factory !
- First Evidence of CP viol. in charm decays in the measurement of D→hh asymmetry

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)}$$
$$f = KK \text{ or } \pi\pi$$

$$\Delta A_{\text{CP}} = A_{\text{CP}}(K^{+}K^{-}) - A_{\text{CP}}(\pi^{+}\pi^{-}) = (-0.82 \pm 0.21 \pm 0.11)\%$$

- Theoretical community is evaluating the compatibility of this result (to be cross checked with independent measurements) with New Physics beyond the Standard Model
- Extra contribution to CP coming from "conventional" hadronic physics unlikely, but still possible

CDF confirms this result: $(-0.62 \pm 0.21 \pm 0.10)$ %

Excellent performance.....

....in 2010 and 2011 over 5/fb delivered

Experiments have about completed their journey through the Standard Model ...

and have started to take us into uncharted territories ...

So: what about the Higgs ?

Search for the Higgs-Boson at the LHC

·Y

Search for the Higgs-Boson at the LHC

SM Higgs

A Collision with two Photons

A Higgs or a 'background' process without a Higgs?

New Combination²⁵

It took ~30 years to experimentally restrict the SM Higgs mass to be above 114 GeV CMS and ATLAS independently eliminated another ~475 GeV of the range in 2011

Expected exclusion 114.5 - 543 GeV Observed exclusion 127.5 - 600 GeV

ATLAS: Combining all (12 !) channels together, full 2011 dataset

27

ATLAS: Combining all (12!) channels together, full 2011 dataset

Status ~ today

SM Higgs boson excluded with 95% cl up to a mass of 600 GeV except for the window 122.5 to 127.5 GeV

"interesting fluctuations" around masses of 124 to 126 GeV

Status ~ today

LHC and the Standard Model

Finding the Higgs:DiscoveryExcluding the SM-Higgs:Discovery

Reminder:

LHC is poised to clarify the mechanism by which elementary particles acquire mass

What about Physics beyond the Standard Model ?

Supersymmetry

Is SUSY in trouble ?

So far no excess in missing energy events,..., go beyond CMSSM, consider pMSSM

SUSY requires a low mass Higgs Boson with severe constraints on the max. mass value

A. Arbey, M. Battaglia, A. Djouadi, F.M., J. Quevillon, Phys.Lett. B708 (2012) 162

model	AMSB	GMSB	mSUGRA	no-scale	cNMSSM	VCMSSM	NUHM
$M_h^{\rm max}$	121.0	121.5	128.0	123.0	123.5	124.5	128.5

End of AMSB and GMSB in their minimal versions!

Higgs mass of 125 GeV severe constraint on all models!

Main ATLAS results on SUSY searches

>	NEW	ATI AS SUSV Searche	s* - 95% CL Lower Limits (Status:	Mariand OCD 2012)	
		ATEAS SUST Searches			
	MSUGRA/CMSSM : 0-lep + i's + E		1 400 TeV 0 = 0 mass		
Inclusive searches	MSUGRA/CMSSM : 1-lep + i's + E _{T min}	L=1.0 fb ⁻¹ (2011) [1109.6606]	$\tilde{\mathbf{g}} = \tilde{\mathbf{g}}$ mass	$\int Ldt = (0.03 - 4.7) \text{ fb}^{-1}$	
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	850 GeV $\tilde{\mathbf{q}}$ mass (large m_{e})	J (0.00).2	
	Pheno model : 0-lep + j's + $E_{T miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	1.380 TeV g mass (m(g) < 2 Te	s = 7 lev	
	Pheno model : 0-lep + j's + $E_{T miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033]	940 GeV \tilde{q} mass $(m(\tilde{q}) < 2$ TeV. lice	$aht \tilde{\gamma}^{0}$) ATLAS	
	Pheno model : 0-lep + j's + $E_{T miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155]	700 GeV \tilde{g} mass $(m(\tilde{g}) < 2 \text{ TeV}, m(\tilde{\chi}^0)$	< 200 GeV) Preliminary	
	Pheno model : 0-lep + j's + $E_{T miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155]	650 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, m(\tilde{\chi}^0) < 0$	< 200 GeV)	
	Gluino med. $\tilde{q} + \tilde{\chi}^{\pm} (\tilde{q} \rightarrow q \bar{q} \tilde{\chi}^{\pm}) : 1 \text{-lep} + j' s + E_{T \text{ min}}$	L=1.0 fb ⁻¹ (2011) [1109.6606]	600 GeV \tilde{g} mass $(m(\tilde{\chi}_{4}^{0}) < 200 \text{ GeV}, \Delta m(\tilde{\chi}_{4})$	$\widetilde{\chi}^{\pm}, \widetilde{\chi}^{0}) / \Delta m(\widetilde{g}, \widetilde{\chi}^{0}) > 1/2)$	
	$GMSB : 2 - Iep OS_{SE} + E_{T,miss}$	L=1.0 fb-1 (2011) [ATLAS-CONF-2011-156]	810 GeV \tilde{g} mass (tan β < 35)		
	GMSB : $1-\tau + j's + E_{T miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005]	920 GeV \tilde{g} mass (tan β > 20)		
	GMSB : $2-\tau + j's + E_{T.miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002]	990 GeV \tilde{g} mass (tan $\beta > 20$)		
	$GGM: \gamma\gamma + E_{\tau,miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	805 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) > 50 \text{ GeV})$		
2	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b\bar{b}\chi_1^0$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	900 GeV. ğ mass (m(χ ₁) < 300 GeV)	
atio	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t}\chi_1^0$) : 1-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003]	710 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 150 \text{ GeV})$		
ner	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t t \tilde{\chi}_1^0$) : 2-lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004]	650 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) < 210 \text{ GeV})$		
d ge	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t}\chi_{1}^{0}$) : multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037]	830 GeV \widetilde{g} mass $(m(\widetilde{\chi}_1^0) < 200 \text{ GeV})$		
Third	Direct \widetilde{bb} ($\widetilde{b}_1 \rightarrow b \widetilde{\chi}_1^0$) : 2 b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832]	390 GeV \tilde{b} mass $(m(\tilde{\chi}_1^0) < 60 \text{ GeV})$		
	Direct $\tilde{t}\tilde{t}$ (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [CF-2012-036] 31	o GeV \widetilde{t} mass (115 < $m(\widetilde{\chi}_1^0)$ < 230 GeV)	~	
g	Direct gaugino $(\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 2-lep SS + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1110.6189] 170 GeV $\widehat{\chi}$	$\max_{1} \max \left((m(\widetilde{\chi}_{1}^{0}) < 40 \text{ GeV}, \widetilde{\chi}_{1}^{0}, m(\widetilde{\chi}_{1}^{\pm}) = m(\widetilde{\chi}_{2}^{0}), m(\widetilde{\chi}_{1}^{0}) \right) = m(\widetilde{\chi}_{2}^{0})$	$(\widetilde{I},\widetilde{v}) = \frac{1}{2}(m(\widetilde{\chi}_1^0) + m(\widetilde{\chi}_2^0)))$	
	Direct gaugino $(\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3I \tilde{\chi}_1^0)$: 3-lep + $E_{T, miss}$	L=2.1 fb ⁻¹ (2011) [CF-2012-023] 250 GeV $\tilde{\chi}_1^{\pm}$ mass ($m(\tilde{\chi}_1^0) < 170$ GeV, and as above)			
cles	AMSB : long-lived $\tilde{\chi}_1^*$	L=4.7 fb ⁻¹ (2011) [CF-2012-034] $\widetilde{\chi}_1^{\pm}$ ma	ss $(1 < \tau(\tilde{\chi}_1^{\pm}) < 2 \text{ ns}, 90 \text{ GeV limit in } [0.2,90] \text{ ns})$)	
artic	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984]	562 Gev ĝ mass		
d pe	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294	Gev b mass		
-live	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 30	e Gev t mass		
buo	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2010) [ATLAS-CONF-2012-022]	819 GeV ĝ mass		
7 :	GMSB : stable ī	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV T Ma	ass		
>	RPV : nign-mass eµ Bilinear PPV : 1-lep + i's + F	L=1.1 fb ⁻¹ (2011) [1109.3089]	1.32 TeV v_{τ} mass (λ_{311} =0.10, \lambda_{311}=0.10, λ_{311} =0.10, \lambda_{311}=0.10, \lambda_{311}	λ ₃₁₂ =0.05)	
R	MSUGRA/CMSSM - BC1 BPV : 4-lepton + F_{-}	L=1.0 fb ⁻¹ (2011) [1109.6606]	760 GeV $q = g \text{ mass} (CT_{LSP} < 15 \text{ mm})$		
••••	Hypercolour scalar gluons : 4 jets $m \neq m$	L=2.1 fb (2011) [ATLAS-CONF-2012-035]	1.7 TeV g mass	2 Coll	
		L=34 pb (2010) [1110.2593] 185 GeV	solution mass (excl. $m_{sg} < 100 \text{ GeV}, m_{sg} = 140 \pm$		
		10 ⁻¹	1	10	
				Mass scale [TeV]	
*/	Only a selection of the available mass limits on new states of	r nhenomena shown			

[IEV]

Only a selection of the available mass limits on new states or phenomena shown

Main ATLAS results on SUSY searches

	NEW	
		ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Moriond QCD 2012)
Inclusive searches	MSUGRA/CMSSM : 0-lep + J's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.400 TeV $\tilde{q} = \tilde{g}$ mass
	MSUGRA/CMSSM : 1-lep + j's + $E_{T,miss}$	$L = 1.0 \text{ fb}^{-1} (2011) [1109.6606] \qquad 820 \text{ GeV} \tilde{q} = \tilde{g} \text{ mass}$
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 850 GeV 5 mass (large m ₀) Is = 7 TeV
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-033] 1.380 TeV \tilde{q} mass $(m(\tilde{g}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0)$
	Pheno model : 0-lep + j's + $E_{T,miss}$	$L=4.7 \text{ fb}^{-1} (2011) [ATLAS-CONF-2012-033] 940 \text{ GeV} \tilde{g} \text{ mass } (m(\tilde{q}) < 2 \text{ TeV}, \text{ light } \tilde{\chi}_1^0) ATLAS$
	Pheno model : 0-lep + j's + $E_{T,miss}$	$L=1.0 \text{ fb}^{-1}(2011) \text{ [ATLAS-CONF-2011-155]} 700 \text{ GeV} \tilde{\text{q}} \text{ rbass } (m(\tilde{\text{g}}) < 2 \text{ TeV}, m(\tilde{\chi}_{1}^{-1}) < 200 \text{ GeV}) Preliminary$
	Pheno model : 0-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-155] 650 GeV \tilde{g} mass $(m(\tilde{q}) < 2 \text{ TeV}, m(\tilde{\chi}_1^0) < 200 \text{ GeV})$
	Gluino med. $\tilde{q} + \tilde{\chi}^{\pm} (\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}) : 1 \text{-lep} + j' \text{s} + E_{T,\text{miss}}$	L=1.0 fb ⁻¹ (2011) [1109.6606] 600 GeV \tilde{g} mass $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, \Delta m(\tilde{\chi}^\pm, \tilde{\chi}^0) / \Delta m(\tilde{g}, \tilde{\chi}^0) > 1/2)$
	GMSB : 2-lep OS _{SF} + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-156] 810 GeV \tilde{g} mass (tan β < 35)
	$GMSB: 1-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-005] 920 GeV \widetilde{g} mass (tan β > 20)
	GMSB : $2-\tau + j's + E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-002] 1 ToV ($\tan\beta > 20$)
	GGM : γγ + E _{T,miss}	L=1.1 fb ⁻¹ (2011) [1111.4116] 80 LICV $n(\tilde{\chi}_1^0) > 50 \text{ GeV}$
	Gluino med. \tilde{b} ($\tilde{g} \rightarrow b \bar{b} \tilde{\chi}^0_1$) : 0-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 900 GeV g mass (m(χ_1^0) < 300 GeV)
atio	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \tilde{t} \tilde{\chi}^{0}_{1}$) : 1-lep + b-j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-003] 710 GeV \tilde{g} mass ($m(\tilde{\chi}_1^0) < 150$ GeV)
Third genera	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t\bar{t}\chi_{*}^{0}$) : 2-lep (SS) + j's + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-004] 650 GeV \tilde{g} mass $(m(\tilde{\chi}_{1}^{0}) < 210 \text{ GeV})$
	Gluino med. \tilde{t} ($\tilde{g} \rightarrow t \tilde{\chi}^0$) : multi-j's + $E_{T,miss}$	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-037] 830 GeV g mass ($m(\tilde{\chi}_1^0) < 200 \text{ GeV}$)
	Direct \widetilde{bb} ($\widetilde{b}_1 \rightarrow b \widetilde{\chi}^b_1$) : 2 b-jets + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [1112.3832] 390 GeV Ď mass (m($\chi_1^{-0})$ < 60 GeV)
	Direct $\widetilde{t}t$ (GMSB) : Z(\rightarrow II) + b-jet + E	L=2.1 fb ⁻¹ (2011) [CF-2012-036] 310 GeV T mass (115 < m(χ̃ ⁰) < 230 GeV)
G	Direct gaugino $(\tilde{\chi}_{*}^{\pm}\tilde{\chi}_{0}^{0} \rightarrow 3I \tilde{\chi}_{*}^{0})$: 2-lep SS + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1110.6189] 170 GeV $\tilde{\chi}_{\pm}^{\pm}$ mass $((m(\tilde{\chi}_{\pm}^{0}) < 40 \text{ GeV}, \tilde{\chi}_{\pm}^{0}, m(\tilde{\chi}_{\pm}^{0}) = m(\tilde{\chi}_{\pm}^{0}), m(\tilde{l}, \tilde{v}) = \frac{1}{2}(m(\tilde{\chi}_{\pm}^{0}) + m(\tilde{\chi}_{\pm}^{0})))$
Ω	Direct gaugino $(\tilde{\chi}_{\tau}^{\pm}\tilde{\chi}_{0}^{0} \rightarrow 3I \tilde{\chi}_{\tau}^{0})$: 3-lep + $E_{T,miss}$	L=2.1 fb ⁻¹ (2011) [CF-2012-023] 250 GeV $\tilde{\chi}_{1}^{\pm}$ mass ($m(\tilde{\chi}_{1}^{0}) < 170$ GeV, and as above)
es	AMSB : long-lived $\tilde{\chi}_{+}^{\pm}$	L=4.7 fb ⁻¹ (2011) [CF-2012-034] $\widetilde{\chi}_{1}^{\pm}$ mass (1 < $\tau(\widetilde{\chi}_{1}^{\pm})$ < 2 ns, 90 GeV limit in [0.2,90] ns)
ived particle	Stable massive particles (SMP) : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 562 GeV g mass
	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 294 GeV b mass
	SMP : R-hadrons	L=34 pb ⁻¹ (2010) [1103.1984] 309 GeV T mass
I-bu	SMP : R-hadrons (Pixel det. only)	L=2.1 fb ⁻¹ (2010) [ATLAS-CONF-2012-022] 819 GeV g mass
LOI	GMSB : stable $\tilde{\tau}$	L=37 pb ⁻¹ (2010) [1106.4495] 136 GeV T MASS
	RPV : high-mass eμ	L=1.1 fb ⁻¹ (2011) [1109.3089] 1.32 TeV \tilde{v}_{r} mass (λ_{211}^{2} =0.10, λ_{212} =0.05)
PV	Bilinear RPV : 1-lep + j's + $E_{T,miss}$	L=1.0 fb ⁻¹ (2011) [1109.6606] 760 GeV q = g mass (ct _{1 SP} < 15 mm)
μ.	MSUGRA/CMSSM - BC1 RPV : 4-lepton + ET.miss	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-035] 1.7 TeV g mass
	Hypercolour scalar gluons : 4 jets, m _{ii} ≈ m _{kt}	L=34 pb ⁻¹ (2010) [1110.2693] 185 GeV sgluon mass (excl: $m_{sq} < 100 \text{ GeV}, m_{sq} = 140 \pm 3 \text{ GeV}$)
	,	
		10 ⁻¹ 1 10
		Mass scale [TeV]
*0	Inly a selection of the available mass limits on new states or	nhado obalo [Tov]

Only a selection of the available mass limits on new states or phenomena shown

Main ATLAS results on SUSY searches

CMS Exotica: Summary for Moriond 2012

MBH, rotating, MD=3TeV, nED = 2, BlackMax MBH, non-rot, MD=3TeV, nED = 2, BlackMax MBH, Quantum BH, MD=3TeV, nED = 2, String Ball M, MD=2.1, Ms=1.7, gs=0.4 String Resonances Axigluon/Coloron e*, A = 2 TeV (2010) μ*, Λ = 2 TeV (2010) C.I. A , X analysis, A+ LL/RR C.I. A , X analysis, A- LL/RR Mb', b' \Rightarrow tW, I+jets Mt', t' \Rightarrow tZ (100%) Mt', t' \Rightarrow bW (100%), I+jets Mt', t' \Rightarrow bW (100%), I+I gluino, HSCP, gluonball=0.5 gluino, Stopped Gluino stop, HSCP stop, Stopped Gluino stau, HSCP, GMSB hyper-K, hyper-p=1.2 TeV

Z', ttbar, lep+jet, width=3% GKK jet+MET k/M = 0.2 GKK jet+MET k/M = 0.3 GKK II k/M = 0.1 GKK yy k/M = 0.1 GKK II k/M = 0.05 GKK yy k/M = 0.05 W' Iv, constructive inter. W' lv, destructive inter. WKK µ = 0.05 TeV W' dijet WR, MNR < 1.0 TeV W'→ WZ ρTC , $\pi TC > 700 \text{ GeV}$ Ms, $\gamma\gamma$, HLZ, nED = 2 Ms, II, HLZ, nED = 2 Ms, $\gamma\gamma$, HLZ, nED = 6 Ms, II, HLZ, nED = 6 MD, monojet, nED = 3

Murayama, ICFA Seminar, 2011 CERN

LHC and Theory...

The 2011 and 2012 run ...

The 2011 and 2012 run ...

Search for physics beyond SM
 Discovering new particles
 Making precise measurements of properties of known particles/forces:
 e.g. B_s → µ⁺µ⁻

The 2011 and 2012 run ...

Search for physics beyond SM
 □ Discovering new particles
 □ Making precise measurements of properties of known particles/forces:
 e.g. B_s → µ⁺µ⁻

....in 2012 already about 3/fb delivered

→ will enter new territory !

The predictable future: LHC Time-line

2009	Start of LHC
	Run 1: 7 and 8 TeV centre of mass energy, luminosity ramping up to few 10 ³³ cm ⁻² s ⁻¹ , few fb ⁻¹ delivered
2013/14	LHC shut-down to prepare machine for design energy and nominal luminosity
Ļ	Run 2: Ramp up luminosity to nominal (10^{34} cm ⁻² s ⁻¹), ~50 to 100 fb ⁻¹
2017/ 18	Injector and LHC Phase-I upgrades to go to ultimate luminosity
	Run 3: Ramp up luminosity to 2.2 x nominal, reaching ~100 fb ⁻¹ / year accumulate few hundred fb ⁻¹
~2021/ 22	Phase-II: High-luminosity LHC. New focussing magnets and CRAB cavities for very high luminosity with levelling
	Run 4: Collect data until > 3000 fb ⁻¹
2030	

The predictable future: LHC Time-line

Key message

There is a program at the energy frontier with the LHC for at least 20 years:

7 and 8 TeV 14 TeV design luminosity 14 TeV high luminosity (HL-LHC)

Road beyond Standard Model

through synergy of

hadron - hadroncolliders(LHC, HE-LHC?)lepton - hadroncolliders(LHeC ??)lepton - leptoncolliders(LC (ILC or CLIC) ?)

Road beyond Standard Model

High Energy Hadron – Hadron Collider HE - LHC

Study of New Physics Phenomena

main challenge: High-Field Magnets

Lepton – Hadron Collider LHeC

QCD, Leptoquarks?

Lepton – Lepton Colliders

Both projects are global endeavours

- Wide range of Physics Topics, e.g.
 - Higgs (self) couplings
 - Z, W, Top studies
 - new physics phenomena

High Priority Items for Linear Collider Projects

ILC and CLIC projects \rightarrow LC project

- **Construction Cost**
- **Power Consumption**
- Value Engineering

Compact facility accelerating muons with recirculating linacs

Major Challenges

- 1. Muon generation
- 2. Cooling of muons
- 3. Cost-efficient acceleration
- Collider ring and backgrounds from decays

Muon Collider Conceptual Layout

Project X Accelerate hydrogen ions to 8 GeV using SRF technology.

Compressor Ring Reduce size of beam.

Target Collisions lead to muons with energy of about 200 MeV.

Muon Capture and Cooling Capture, bunch and cool muons to create a tight beam.

Initial Acceleration In a dozen turns, accelerate muons to 20 GeV.

Recirculating Linear Accelerator In a number of turns, accelerate muons up to 2 TeV using SRF technology.

Collider Ring

Bring positive and negative muons into collision at two locations 100 meters underground.

Higgs Boson properties

All projects need continuing accelerator and detector R&D;

All projects need continuing attention concerning a convincing physics case; close collaboration exp-theo mandatory

so that the right decision can be made when the time comes to identify the next energy frontier accelerator (collider). **Today, we need to keep our choices open.**

- Rich variety of projects under study at the energy frontier and the intensity frontier
- Global Regional National Projects
 - → Need to present and discuss all these projects in an international context before making choices
 - → Need to present physics case(s) always taking into account latest results at existing facilities
 - → Need to present (additional) benefits to society from the very beginning of the project 56

- Rich variety of projects under study at the energy frontier and the intensity frontier
- Global Regional National Projects
 - \rightarrow Need to present and discuss all these projects in an international context before aking choices
 - → Need to present photo a solution account
 → Need to protect and a solution all the solutis all the solution all the solution all the solution all th
 - from the very beginning of the project 57

- Update of the European Strategy for Particle Physics in 2012/13
 - Several Meetings with international participation
 - → bottom-up process: community input requested 1st open meeting September 2012, Cracow
 - Finalization: May/June 2013
- Started with the ICFA Seminar 3-6 October 2011 at CERN

Use as 1st step to harmonize globally Particle Physics Strategy

Past decades saw precision studies of 5 % of our Universe \rightarrow Discovery of the Standard Model

The LHC is delivering data

We are just at the beginning of exploring 95 % of the Universe

Past decades saw precision studies of 5 % of our Universe \rightarrow Discovery of the Standard Model

The LHC is delivering data

We are just at the beginning of exploring 95 % of the Universe

exciting prospects