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terminated at both ends with its frequency dependent 
characteristic impedance 

eff

eff
g ZZ




0   (6) 

where 0Z is the free space impedance and eff and eff
are calculated as the effective permeability and 
permittivity of the kicker magnet approximated as an 
equivalent microstrip [10]. Figure 4 shows the 
comparison between the CST simulations and our model 
for an MKP module in the CMM approximation. The 
simulation and the theoretical model are in very good 
agreement over the whole explored frequency range. The 
small difference below 200 MHz could be related to the 
TEM approximation of the Quasi-TEM mode supported 
by the kicker module. Figure 5 shows the longitudinal 
impedance of an MKP module in the CMM 
approximation. Also in this case our model is in very 
good agreement with the CST simulations. The good 
agreement in the low frequency peak (around 55 MHz) is 
remarkable. This peak is related to the contribution of the 
TEM mode to the longitudinal impedance (Eq. 3).   

 

Figure 4: Comparison of the driving horizontal 
impedance for an MKP-L module of CST 3D TD 
simulations (dashed lines) with the theoretical model (full 
lines). 

 

Figure 5: Comparison of the longitudinal impedance for 
an MKP-L module of CST 3D TD simulations (dashed 
lines) with the theoretical model (full lines). 

EFFECT OF THE EXTERNAL CIRCUITS 
The ejection kicker of the PSB is analyzed as example 

of interest for our model. In the PSB the cables that 
connect the kicker to the generator are not as long as in 
the SPS where the cables are roughly 200 meters and can 

then determine resonances at frequencies relatively high. 
The external impedance including cables can be 
calculated resorting to the transmission line theory. Figure 
6 shows the dipolar horizontal impedance of the ejection 
kicker (EK) of the PSB calculated when the kicker is 
matched at one side and open circuited at the other side 
and when the kicker is open circuited at both sides. The 
first resonance appears at 1.5 and 1.65 MHz. Anyway 
these values depend on cable length and characteristic 
impedance. The height and width of the peaks depend on 
the cable attenuation that is considered to be 0.1dB/m in 
the calculation. 

 
Figure 6: Driving horizontal impedance of the EK PSB 
kicker open terminated at both end (blue) and with one 
end matched and the other open terminated (red). 

CONCLUSION 
The EM problem of a device such a kicker magnet has 

been analyzed. A theoretical model based on the 
separation of the two different contributions to the 
coupling impedance (coupling with the magnet winding, 
TEM effect, and core losses) has been presented. The core 
losses contribution has been approximated with the 
Tsutsui model [1] while the TEM contribution for a C-
Magnet was calculated using the same approach as in Ref. 
[4]. The model has been successfully benchmarked with 
CST-3D TD simulations and has been used to estimate 
the contribution of the external circuits for the EK PSB.  
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