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Abstract
In proton synchrotrons, ceramic chambers are used as

vacuum chambers to avoid the effect on magnetic fields

from eddy current excited by the magnetic fields. One of

the standard methods of the derivation of the impedances

of the ceramic chamber is the field matching technique.

In this report, we reproduce the formulae of the ceramic

chamber impedance in terms of electric and magnetic po-

larities. When the beam passes through the chamber, the

impedance is mainly excited by the electric polarity of the

ceramic.

INTRODUCTION
In proton synchrotrons, ceramic chambers are used to

avoid effects on magnetic fields in the vacuum chamber

from eddy currents excited by the magnetic fields [1, 2].

In order to accomplish the high intensity beam, it is impor-

tant to evaluate the impedance due to the ceramic chamber

correctly.

One of the standard methods of the derivation of the

impedance of the ceramic chamber is the field match-

ing technique [3], while it is difficult to imagine the

impedance source in the calculation. It is known that the

impedance is written by electric and magnetic polarities of

the impedance source [4], which is useful to understand the

excitation mechanism of the impedance source.

In this report, we reproduce the formulae of the ce-

ramic chambers by explicitly calculating the electric and

magnetic polarities of the ceramics. The derivation of the

impedance reveals that the impedance is mainly caused by

the excitation of the electric polarity of the ceramic.

In the next section, let us first derive the impedance of the

ceramic chamber by using the field matching technique.

DERIVATION OF THE IMPEDANCES
WITH THE FIELD MATCHING

TECHNIQUE

Cu stripes

ceramic pipe

a
a2

conducting beam pipe

ceramic pipe

a
a2

Figure 1: A schematic picture of the ceramic chamber.

As shown in the left figure of Fig.1, copper stripes attach

on the ceramic chamber to shield radiation effects from

beams. In order to calculate the impedance of the cham-

ber in an analytical way, the configuration is simplified as

in the right figure of Fig.1, such that the ceramic pipe is

surrounded by perfectly conductive pipe instead of cop-

per stripes. It is known that the approximation well de-

scribes the impedance of the ceramic chamber except non-

relativistic beams [5].

Longitudinal Impedance
Let us derive the longitudinal impedance when a rela-

tivistic beam passes through the chamber. A cylindrical

coordinate (r, ϕ, z) is used in the following calculations.

From now on, we omit the factor e−jk̃z in the expression

of the fields. General solutions for the monopole mode

(m = 0) are expressed as

Ez = A(k̃), (1)

Hϕ =
c

2πr
+

jk̃rA(k̃)

2Z0
, (2)

inside the chamber (r < a), and

Ez = B(k̃)[J0(α̃r)− J0(α̃a2)

Y0(α̃a2)
Y0(α̃r)], (3)

Hϕ =
jε′B(k)

Z0

√
ε′ − 1

[J1(α̃r)− J0(α̃a2)

Y0(α̃a2)
Y1(α̃r)], (4)

in the ceramic (a < r < a2), where α̃ = k̃
√
ε′ − 1, c is

velocity of light, k̃ = ω/c, Z0 = 120π, ε′ is the relative

dielectric constant of the ceramic, A(k̃), B(k̃) are arbitrary

coefficients that will be determined by using the matching

conditions on the surface specified by r = a. The longitu-

dinal impedance is given as

ZL = −A(k̃)

c
L, (5)

where L is the length of the chamber and

A(k̃) =
− cZ0

2πa

− jε′[J1(α̃a)− J0(α̃a2)

Y0(α̃a2)
Y1(α̃a)]

√
ε′−1[J0(α̃a)− J0(α̃a2)

Y0(α̃a2)
Y0(α̃a)]

+ jk̃a
2

. (6)

For low frequency, it is approximated to

(ZL)ceramic = j
ωZ0(ε

′ − 1)L
2πε′c

log
a2
a
, (7)

which is identical to the previous Tsutsui’s results.
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Transverse Impedance
When a non-relativistic beam with the azimuthal depen-

dency of jz = qβcδ(r− rb) cos(ϕ−ϕb)e
−jkz/πrb is run-

ning inside the chamber, general solutions for the dipole

mode (m = 1) are expressed as

Ez = i1(E
S
z +A(k)I1(k̄r) cos(ϕ− ϕb)), (8)

Hϕ = i1H
S
ϕ

+ i1
jγ

(
B(k)I1(k̄r)

r + βk̄A(k)
Z0

I ′1(k̄r)
)
cos(ϕ− ϕb)

k̄
, (9)

Hz = i1B(k)I1
(
k̄r

)
sin(ϕ− ϕb), (10)

Eϕ = i1E
S
ϕ − i1

jβγZ0

k̄

×
(
k̄B(k)I ′1(k̄r) +

A(k)

Z0βr
I1(k̄r)

)
sin(ϕ− ϕb), (11)

inside the chamber (r < a), and

Ez = C3(k)[J1(αr)− J1(αa2)

Y1(αa2)
Y1(αr)] cos(ϕ− ϕb),

(12)

Hϕ =
jβε′

Z0k(1− ε′β2)
[
Z0C1(k)(J1(αr)− J ′

1(αa2)
Y ′
1 (αa2)

Y1(αr))

βε′r

+ C3(k)α(J
′
1(αr)−

J1(αa2)

Y1(αa2)
Y ′1(αr))] cos(ϕ− ϕb),

(13)

Hz = C1(k)[J1(αr)− J ′1(αa2)
Y ′1(αa2)

Y1(αr)] sin(ϕ− ϕb),

(14)

Eϕ =
1

jk(1− β2ε′)
[αβZ0C1(J

′
1(αr)−

J ′1(αa2)
Y ′1(αa2)

Y ′1(αr))

+
C3

r
(J1(αr)− J1(αa2)

Y1(αa2)
Y1(k

√
ε′ − 1r))] cos(ϕ− ϕb),

(15)

in the ceramic (a < r < a2), where

ES
z =

{
jkcZ0I1(k̄rb)

πrbγ2 K1(k̄r) cos(ϕ− ϕb) for r > rb,
jkcZ0K1(k̄rb)

πrbγ2 I1(k̄r) cos(ϕ− ϕb) for rb > r,

(16)

ES
ϕ =

{
cZ0I1(k̄rb)

rπrb
K1(k̄r) sin(ϕ− ϕb) for r > rb,

cZ0K1(k̄rb)
rπrb

I1(k̄r) sin(ϕ− ϕb) for rb > r,

(17)

HS
ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βkcI1(k̄rb)
2πrbγ

(K0(k̄r) +K2(k̄r)) cos(ϕ− ϕb)

for r > rb,

−βkcK1(k̄rb)
2πrbγ

(I0(k̄r) + I2(k̄r)) cos(ϕ− ϕb)

for rb > r,

(18)

the factor e−jkz is omitted, β is Lorentz-β, α = k
√
ε′ − 1,

k = 2πf/βc, k̄ = k/γ, Km(z) and Im(z) are

the modified Bessel functions, respectively, i1 = qrb,

A(k), B(k), C1(k) and C3(k) are arbitrary coefficients,

which are determined by boundary conditions at r = a,

as well.

Using the Panofsky-Wenzel theorem, the expression of

the transverse impedance for the relativistic beam in the

low frequency as

ZT = j
LZ0(a

2
2 − a2)

2πa2a22
. (19)

When the thickness of the chamber a2−a is so small com-

pared to a, we reproduce the empirical formula:

(ZT )ceramic = j
Z0L
πa2

log
a2
a
� 2

ka2
(ZL)ceramic. (20)

DERIVATION OF THE IMPEDANCES
WITH THE ELECTRIC AND MAGNETIC

POLARITIES IN THE CERAMICS
In this section, we reproduce the impedances of the ce-

ramic chamber in terms of the electric and magnetic po-

larities in the ceramic. Let us confine our discussion on

the chamber whose longitudinal length L is sufficiently

longer than the radius of the chamber a. First, we ex-

plain how to derive the magnetic polarity αm in the ce-

ramic. The assumption was made that the uniform mag-

netic dipole moment per a volume 
m, which is equal to

m(− sin θ, cos θ, 0), exists at (r0 cos θ, r0 sin θ, ξ). The

vector potential 
A at (r cosϕ, r sinϕ, z) can be described

as,


A =

∫
μ0

4π

m(r′)× 
r

r3
dV ′

=
μ0m

4π

∫ ∞

−∞
dξ

∮
dθ

∫ a2

a

dr0r0×
[(z − ξ) cos θ, (z − ξ) sin θ,−r cos(ϕ− θ) + r0]

((r cosϕ− r0 cos θ)2 + (r sinϕ− r0 sin θ)2 + (z − ξ)2)
3
2

(21)

where both the upper and the lower bounds of ξ-integration

approximately go to infinity. After the ξ-integration, only

Az component is not zero. Then, we obtain

Az =
μ0m

2π

∮
dθ

∫ a2

a

dr0r0
−r cos(ϕ− θ) + r0

r2 + r20 − 2rr0 cos(ϕ− θ)

= μ0m(a2 −max {r, a}). (22)

The vector potential gives the magnetic field as

Hθ =

{
m for r > a,
0 for r < a.

(23)

Since the magnetic field in the ceramic is given by the

superposition of Eq.(23) and

Hθ =
IB
2πr

, (24)
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where IB is the beam current, it is described as

Hθ = m+
IB
2πr

. (25)

In vacuum, the magnetic field is given by

Hθ =
IB
2πr

. (26)

Since the azimuthal component of magnetic field should

be continuous, the magnetic dipole moment m is equal to

zero. In other words, the magnetic polarity αm is identical

to zero.

Secondly, we derive the electric polarity αe in the ce-

ramic. For this purpose, let us calculate the radial compo-

nent of the electric field. When a longitudinally uniform

charge, whose line density is equal to λ, exists at the center

of the chamber, the radial component of the electric field

Er is given by

Er =

{ λ
2πε0r

for r < a,
λ

2πε′ε0r
for r > a.

(27)

Since there is perfectly conductive pipe at the outer surface

of the ceramic a2, the electric potential Φ is expressed as

Φ = −
{ λ

2πε0
log r

a + λ
2πε′ε0

log a
a2

for r < a,
λ

2πε′ε0
log r

a2
for r > a.

(28)

When the beam runs in the chamber, the negative charge

is induced on the inner surface of the chamber and the pos-

itive charge is done on the outer surface of the chamber.

Then, we can imagine that there is the electric dipole mo-

ment per a volume 
p, which is equal to p0(cos θ, sin θ, 0),
along the radial direction.

The electric potential Φe at (r cosϕ, r sinϕ, z) due to

the electric dipole is given by

Φe =
1

4πε0

∫

p(r′) · 
r

r3
dV ′. (29)

If the dipole moment exists at (r0 cos θ, r0 sin θ, ξ), the

electric potential Φe is calculated as

Φe =
1

4πε0

∫ ∞

−∞
dξ

∮
dθ

∫ a2

a

dr0r0×
p0[cos θ(r cosϕ− r0 cos θ) + sin θ(r sinϕ− r0 sin θ)]

((r cosϕ− r0 cos θ)2 + (r sinϕ− r0 sin θ)2 + (z − ξ)2)
3
2

= −p0
ε0

(a2 −max {r, a}), (30)

where the both the upper and the lower bounds of ξ-

integration approximately go to infinity.

Here the assumption was made that the electric potential

in the ceramic is given by the superposition of the potential

Φ without the ceramic, which is equal to − λ
2πε0

log r
a2

and

Φe, which is given by Eq.(30). It is given by

− λ

2πε0
log

r

a2
− p0

ε0
(a2 −max {r, a}). (31)

Since Eqs.(28) and (31) are continuous at r = a, we obtain

− λ

2πε0
log

a

a2
− p0

ε0
(a2 − a) = − λ

2πε′ε0
log

a

a2
. (32)

Equation(32) is rewritten, and the electric dipole moment

per a volume p0 is expressed as

p0 =
λ

2π(a2 − a)
(
1

ε′
− 1) log

a

a2
. (33)

Since the volume of the ceramic pipe is equal toL2πa(a2−
a), the total electric dipole moment P is calculated as

P = p0L2πa(a2 − a) = Laλ( 1
ε′
− 1) log

a

a2
. (34)

Since the electric polarity αe is defined as

P = αeε0
λ

2πε0a
, (35)

it is expressed as

αe = 2πLa2( 1
ε′
− 1) log

a

a2
. (36)

We have already known that both the longitudinal and

the transverse impedances are given by [4]

ZL = j
ωZ0

c

αe + αm

4π2a2
, (37)

ZT = jZ0
αe + αm

2π2a4
, (38)

by using the electric and the magnetic polarities. Substitut-

ing Eq.(36) and αm = 0 into Eqs.(37) and (38), we obtain

ZL = j
ωZ0

c

1

4π2a2
2πLa2( 1

ε′
− 1) log

a

a2

� j
ωZ0L
2πc

log
a2
a
, (39)

ZT = jZ0
1

2π2a4
2πLa2( 1

ε′
− 1) log

a

a2

� jZ0
L
πa2

log
a2
a
. (40)

Eqs.(39) and (40) are identical to Eqs.(7) and (20). The

derivation of the impedance reveals that the dominant con-

tribution to the impedances of the ceramic chamber comes

from the electric polarity rather than the magnetic one.
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