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Abstract
An essential ingredient for the proposed Multi-Turn Ex-

traction (MTE) at the CERN PS is the beam trapping in
stable islands. The control of the trapping process is essen-
tial for the quality of the final beam in terms of intensity
sharing and emittance. In this paper, the splitting process is
studied quantitatively by means of numerical simulations
performed on 2D model representing the horizontal non-
linear betatronic motion. The results are reviewed and dis-
cussed in details.

INTRODUCTION
The multi-turn extraction (MTE) is based on the trap-

ping of a fraction of particle beam in stable islands created
in the horizontal phase space by means of sextupoles and
octupoles [1, 2]. The beam is split by crossing a resonance
using a variation of the tune. Different resonances have
been successfully tested at the CERN PS [3] and the actual
implementation uses the fourth order resonance. The re-
sulting beam is made of two different structures: the core
and four beamlets corresponding to the particles trapped
inside the stable islands. By inducing a closed orbit bump
around the extraction septum it is then possible to extract
the beam in five turns. A crucial point of this method is to
obtain an equal intensity and emittance sharing among the
core and the four islands. Such a sharing depends on the
strengths of the non-linearities, the tune variation, and the
initial beam distribution. The effect of these parameters has
been studied by means of a simple numerical model. The
motion in the accelerator is represented by a linear trans-
formation except for a sextupole and an octupole, located
at the same place, and represented by a single, non-linear
kick [2]. In this paper we discuss the results of numeri-
cal simulations based on a 2D generalised Hénon mapping
given by
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where ωn = 2πν(n) is time-varying and κ represents
the ratio between the strengths of the non-linear elements,
weighted by the value of the beta function at that loca-
tion. These coordinates are dimensionless and are related
to the usual Courant-Snyder coordinates by the scaling fac-
tor 1

2K2β
3/2
x . The trapping of a particle inside the island

occurs when it crosses the separatrix, which is moving due
to the tune variation. At that point the particle has a certain
probability to be trapped in the island. That probability in-
creases if the adiabaticity of the crossing is increased, i.e.,
if the motion of the separatrix is slow compared to the mo-

tion of the particle in the phase space. Fig. 1 represents the
evolution of the beam distribution during the tune variation.

Figure 1: Beam distribution at the beginning (n = 0) and
end (n = 20000) of the trapping process. In all simulations
106 particles have been used.

TRAPPINGMODEL
The trapping fraction T , defined as the percentage of

particles trapped in one island, is crucial to assess the per-
formance of the splitting process as the goal is to reach
T = 20%, which corresponds to beamlets and core equally
populated. Tracking simulations using the model (1) were
performed to obtain T as a function of the total number
of turns N over which the tune variation is performed, the
strength κ, and the initial emittance εi. The resonance is
crossed from above with a tune varying linearly from 0.252
to 0.245.
Fig. 2 displays T for an initial Gaussian beam distribu-

tion of 106 initial conditions as a function of εi for a given
set of N and κ. The trapping increases with εi in a similar
way for the range of variation of N and κ that was used. A
model for T is proposed with the following form

T (ε, N, κ) = A(κ, N)
[
1− e−B(κ,N)εi+C(κ,N)

]
(2)

where the results show that the following simple expres-
sions can be assumed for the functions A, B and C:

A(κ, N) = (c1κ + c2)(d1

√
N + d2)

B(κ, N) = (c3κ + c4)(d3N + d4)
C(κ, N) = (c5κ + c6)(d5N + d6).

(3)

Simulations performed for a large range of parameters set1
allowed to obtain the numerical values of the coefficients
listed in Table 1 together with the error associated with the
fit. The increase of the trapping with a slower tune vari-

1Beam distributions with 2×10
−4 ≤ εi ≤ 80×10

−4,−1.9 ≤ κ ≤

−1.1 and 5× 10
3 ≤ N ≤ 25× 10

3.
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Figure 2: Trapping fraction as a function of εi for different
sets of parameters N and κ. The markers represent the
simulation results, while the lines the fitted curves.

Table 1: Coefficients of the fit defined in Eqs. (2) and (3)
c1 0.288 ± 0.009 c2 3.588 ± 0.007
d1 0.44 ± 0.01 d2 5.400 ± 0.007
c3 1.742 ± 0.056 c4 −1.322 ± 0.074
d3 −0.054 ± 0.002 d4 −0.125 ± 0.001
c5 −0.111 ± 0.007 c6 −0.383 ± 0.011
d5 0.341 ± 0.006 d6 −1.217 ± 0.004

ation is easily understood as an improvement of the adia-
baticity of the process as the separatrix moves slower. We
observe also a reduced effect for large emittances: indeed
the trapping of large amplitude particles already occurs in
conditions where the adiabaticity is restored as the motion
of the islands is more sudden when they are close to the ori-
gin. That behaviour does not depend much on the value of
κ, justifying the factorisation in the coefficients of Eq. (3).
We also conclude from Fig. 2 and from our model that

the effect of a small |κ| is to improve the trapping for large
emittances while it decreases for small emittances. Us-
ing again the argument of the adiabaticity of the separatrix
crossing, it is observed that for small |κ| the stable fixed
points move away from the origin faster as the tune varies
close to the resonant value. On the other hand, small |κ| al-
lows the islands to move further away from the origin thus
improving the trapping in the tails of the Gaussian distribu-
tion, which improves the trapping for large emittances.
The zoom of Fig. 2 close to the origin also reveals an

important feature of the trapping process: below a cer-
tain amplitude the trapping fraction is zero. That indicates
the presence of a region of phase space around the origin
where no trapping can occur due to the non adiabatic mo-
tion of the separatrices. Simulations with uniform distribu-
tions (therefore with sharp edges) were performed to char-
acterise better that region. That allowed to find the min-
imal trapping amplitude Rmin as a function of κ and N .
Fig. 3 shows the obtained results. The minimal amplitude
decreases following an exponential with the total number
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Figure 3: Rmin as a function ofN , comparison of different
values of κ.

of turns. A fitting model of the form Ãe−B̃(κ)N + C̃(κ)
can be proposed for the whole range of values of κ used in
the simulations. Ã, B̃, and C̃ are positive quantities and it
turns out that B̃ and C̃ are linear in κ. Fig. 3 also displays
the value of the asymptote C̃(κ). The value of C̃(κ), i.e.,
the region of phase space were no trapping can occur due
to the lack of adiabaticity even for a very large N , is a de-
creasing function of |κ|. Indeed, in these cases the islands
stay closer to the origin, the motion of the fixed point is thus
slower for a given variation of the tune. It is worth stress-
ing that the integral of the beam distribution over Rmin

provides the fraction of particles that will be never trapped
in the beamlets and hence prevents reaching T = 20%.
The value of T has also been evaluated using a time de-

pendent variation of κ. The results show that the effect of κ
on the trapping is mainly given by its value at the beginning
of the trapping, i.e., when the islands are growing close to
the origin. In addition, using a non-linear tune variation
where the slope of the tune curve is zero at the resonance
crossing allowed to confirm our argument of adiabaticity,
as it is clearly observed that the trapping fraction is in-
creased in such a case. Such a phenomenon was already
reported in Ref. [4]

EMITTANCE EVOLUTION
After the splitting, the emittances of the core εcore and of

the beamlets εbeamlets are different and are reduced com-
pared to εi. The value of the resulting εcore depends on two
counteracting effects: the reduction due to the trapping of
an important part of the initial intensity in the islands and
the growth due to particles crossing the separatrix without
being trapped. The εbeamlets depends on the topology of
the phase space, the density of the beam located in the is-
lands can be varied if the islands are squeezed and dilated
by the non-linearities.
The values of εbeamlets and εcore have been computed

from the simulations and the ratios to εi have been com-
puted. Fits like Â(N, κ)e−B̂(N,κ)εi + Ĉ(N, κ) for the
core emittance ratio and of the form Â(N, κ)ε

−B̂(N,κ)
i +
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Ĉ(N, κ) for the island emittance ratio have shown good
agreement with the results at least for εi not too small. The
functional form for εbeamlets features B̂ > 0. In the case of
small εi the trapping will be very small, due to the presence
of the no-trapping zone of size Rmin, and large emittance
growth is observed. Fig. 4 (upper) shows one case. Results
for different sets of κ and N shows that the core emittance
ratio reaches less than 20% for large enough εi. For large
values of |κ| the island emittance ratio also reaches a value
close to 20% but for small |κ| the resulting emittance ratio
can be close to 50% even for large initial emittances. The
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Figure 4: Emittance ratios for N = 20000 and different κ
(upper). Emittance ratios for κ = −1.1 and N = 20000
and non-linear variation of the tune (lower).

impact of a non-linear tune variation on the emittance ra-
tios has also been analysed. Fig 4 (lower) shows the results
where the slope of the tune curve is zero at the resonance
crossing. The case of the core seems to feature a smaller
final emittance independently on εi. On the other hand, the
beamlets feature a smaller εbeamlets only when εi is not too
large.
Simulations where a time variation of κ is applied led to

interesting conclusions. The results show that it allows to
improve both the trapping fraction (which is found to be
better for smaller |κ|) as well as the emittance ratios. The
time variation of κ was linear from −1.1 to −1.9. Results
for one case are shown in Fig. 5. The trapping fraction

reaches a value close to the static case κ = −1.1 while
the emittance ratios are lowered to values corresponding to
cases in-between κ = −1.1 and −1.9.
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Figure 5: Trapping, core emittance ratio and island emit-
tance ratio for different values and variations of κ.

CONCLUSIONS
Parametric studies of the trapping fraction and the emit-

tance are presented, based on detailed and massive numer-
ical simulations using a 2D model of the MTE dynamics.
A numerical fitted model is proposed for the trapping as a
function of the free parameters of the model, namely initial
beam emittance, non-linear strength κ and number of turns
N over which the resonance crossing is performed. Fur-
thermore, simple models were derived also for the size of
the small area around the origin in which trapping can never
occur, as well as for the final emittance of the core and
beamlets. More refined models in which the tune variation
is non-linear and also the parameter κ is time-dependent
showed further option to optimise the overall trapping pro-
cess. The next step will be the link between the fitted mod-
els and analytical properties of the system (1) and the anal-
ysis of the impact of the vertical motion.
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