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Abstract
A beam’s charge density, treated as a smooth and contin-

uous function can be approximated using an orthogonal se-
ries, allowing a solution of Poisson’s equation to be found.
Getting the most accurate solution to the electric poten-
tial requires the best approximated charge density. Several
beam distributions are approximated using Jacobi polyno-
mials generated by the recursion relation and the moment
method. Varing both the particle number and order of the
approximation gives a chance to not only compare the per-
formance of the different polynomials, but allows to de-
termine if a particular combination of order and particle
number works better for a particular function. Although all
three orthogonal polynomials used give similar results, the
approximation coefficients should be allowed to converge
and taken to high orders for best results. This is clearly
seen on the single Gaussian approximation,where after five
million particles, the difference between the distributions
remains constant and the highest tested order gives best re-
sults.

INTRODUCTION
Solving the single particle equations of motion requires

the space-charge fields in addition to those external. These
fields can be solved by using Poisson’s equation for a given
beam distribution [1]. With a vanishing potential at infinity,
the solution to (1) only relies on the integral of a charge dis-
tribution function, as shown in (2). The charge distribution
can then be treated as a smooth function and approximated
to a truncated order with a sum of polynomials and their
coefficients using Weierstrass theorem [2]; see (3). Mini-
mizing an error function in the approximated charge distri-
bution will result in the best solution for the potential.

∇2Φ(�r) = −
ρ(�r)

ε0
Φ(∞) = 0 (1)

Φ(�r′) =
1

4π

∫
ρ(�r′)∥∥∥�r − �r′

∥∥∥d
�r′ (2)

ρ(�r) =

n∑
i=0

aiPi(�r) (3)

With Weierstrass theorem, any type of polynomials can
be used to approximate the charge distribution. Orthog-
onal polynomials in particular have very nice properties
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that simplify mathematical calculations. Because beams
are contained in a finite space that can be rescaled to suit,
any interval of orthogonality [a, b] can be chosen to define
the orthogonal polynomials. Defining it as [−1, 1] results in
the orthogonality interval that defines Jacobi polynomials,
[3]. More specifically, we choose the cases of Jacobi poly-
nomials where α = β, i.e. Legendre and Chebyshev I. In
addition to the orthogonality properties, these polynomials
are also known for minimizing certain errors.
A distribution function, which describes the distribution

of the particles inside the beam, usually takes a bell-shaped
curve. According to the Central Limit Theorem, many
small effects on the beam will eventually transform the dis-
tribution into a Gaussian if enough time is allowed [1, 4]. A
set of classic beam distributions represent the extremes of
a beam distribution, starting with the K-V distribution and
moving to the WaterBag, Parabolic and the Gaussian at the
other end. Because the beam is not always allowed to fully
evolve into a Gaussian, other distributions like these are
used to model the charge distributions. All four distribu-
tions are defined over phase space. If any of these distribu-
tions is integrated over the velocities, the result is the 2D
projection of the distribution. In the case of the K-V distri-
bution, the two dimensional representation is known as the
Uniform distribution.

CHARGE DENSITY APPROXIMATIONS
WITH ORTHOGONAL POLNOMIALS
Although beams are composed of N discrete particles,

represented by a sum of delta functions, the charge distri-
bution can be sampled from a smooth function and approx-
imated with orthogonal polynomials. This approximation,
written in (4), needs to be truncated to a particular order m
in order to be computationally feasible.

F (x) =

N∑
j

δ(x − xj)

=̂

∞∑
i

aiPi(x) ≈

m∑
i

aiPi(x) (4)

Once a polynomial is chosen for the approximation, it
is necessary to calculate the coefficients that correspond
to the polynomials. By multiplying both sides of (4) by
Pn(x)W (x) and integrating on the interval [a, b] with re-
spect to x, the equation is now in form that can be simpli-
fied by applying orthogonality conditions and using a delta
function property. This equation can then be solved for the
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approximated polynomial coefficients an in terms of an or-
thogonal polynomial and its weight function.

N∑
j

∫ b

a

δ(x − xj)Pn(x)W (x)dx

=

m∑
i

∫ b

a

aiPi(x)Pn(x)W (x)dx (5)

N∑
j

Pn(xj)W (xj) = an

∫ b

a

Pn
2(x)W (x)dx (6)

an =

∑N

j Pn(xj)W (xj)∫ b

a
Pn

2(x)W (x)dx
(7)

For the case where instead of a delta function, the dis-
tribution function is continuous and defined by g(x), (7) is
written in terms of the integral of g(x). These coefficients
bn will serve as a comparison point for the approximated
coefficients and help determine whether the coefficients an
have reached convergence.

bn =

∫ b

a
g(x)Pn(x)W (x)∫ b

a
Pn

2(x)W (x)dx
(8)

Changing the particle number N and the polynomial used
on the calculation will allow determining if a particular
combination is best for a distribution. To compare the dif-
ferent combinations, the error between the approximated
charge distribution and the distribution based on g(x) is
calculated using (9).

ε =

∫
|ρ(�r)− ρa(�r)| d�r (9)

RESULTS
Single One Dimensional Gaussian Distribution
The first distribution approximated was a 1D single

Gaussian with mean μ = 0 and variance σ2 = 1

36
with

a randomly generated particle set of 1.5·107. Using (7) the
coefficients up to order n = 20 for Legendre and Chevy-
shev polynomials were approximated for every 104 points
up to 106 million and for every million after that. Figures
1 and 2 shows a sample of the progression of the approxi-
mations for the polynomials.
Although all the figures with n = 20 show a very good

approximation, by looking at the figures with just the naked
eye, it is impossible to tell if there is a difference as we
move from left to right in the figures, which increases the
particle number. On the other hand, by moving from top
to bottom which increases the order, there is a clear dif-
ference in the approximation. Using (9), we calculated the
difference the difference between the plots in order to com-
pare the polynomials to each other. From table 1, we see
that for n = 20 the approximation has an error of around
0.1% for all polynomials used. Looking across the entire
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Figure 1: At the top, the Legendre polynomial approxima-
tions of the charge density for n = 4 with 105 and 107

points and for n = 20 with 105 and 107 points below.
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Figure 2: At the top, the Chebyshev I polynomial approxi-
mations of the charge density for n = 4 with 105 and 107
points and for n = 20 with 105 and 107 points below.

table that Chebyshev I starts out with a lower error than the
other two. This later changes to Legendre giving the best
approximated distribution overall. It is also important to
point out that after a few million particles, the numbers stop
changing drastically and just vary slightly. This is because
the coefficients have reached a convergence point after a
certain number of particles.

Uniform Distribution
In addition to a single Gaussian, we also approximated a

Uniform distribution centered at zero also in the boundary
[−1, 1]. Similarly to the Gaussian, the number of particles
and approximation order reached a maximum of 1.5·107
particles and order n = 20. The interval for the approxi-
mations was also kept constant. Contrary to the Gaussian
distribution, the Uniform approximation is not as good. Be-
cause of the hard edges on the distribution, it is impossible
for polynomials to approximate it exactly. Even at n = 20
there is plenty of oscillations around the sharp edges and it
is far from an almost perfect approximation. This is sup-
ported by the numbers in table 2. For the maximum order
and number of particles, the error is around 12% to 16%.
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Table 1: Error between the Gaussian distribution and polynomial approximations for select orders and particle numbers.
N 10

4
10

5
10

6
5 · 10

6
10

7
1.5 · 10

7

L CI L CI L CI L CI L CI L CI
4 0.6733 0.6703 0.6732 0.6706 0.6733 0.6706 0.6734 0.6706 0.6734 0.6706 0.6733 0.6707
8 0.2460 0.2500 0.2458 0.2505 0.2458 0.2505 0.2459 0.2506 0.2460 0.2506 0.2459 0.2506
12 0.0637 0.0647 0.0625 0.0648 0.0622 0.0646 0.0622 0.0646 0.0623 0.0646 0.0622 0.0647
16 0.0228 0.0155 0.0141 0.0143 0.0112 0.0121 0.0113 0.0119 0.0113 0.0119 0.0112 0.0119
20 0.0236 0.0113 0.0086 0.0097 0.0020 0.0031 0.0016 0.0018 0.0015 0.0017 0.0016 0.0017

Table 2: Error between the Uniform distribution and polynomial approximations for select orders and particle numbers.
N 10

4
10

5
10

6
5 · 10

6
10

7
1.5 · 10

7

L CI L CI L CI L CI L CI L CI
4 0.3145 0.3152 0.3150 0.3152 0.3144 0.3155 0.3144 0.3153 0.3144 0.3153 0.3144 0.3153
8 0.2259 0.2286 0.2265 0.2287 0.2254 0.2305 0.2254 0.2293 0.2253 0.2295 0.2254 0.2296
12 0.2014 0.2026 0.2001 0.1988 0.2008 0.1985 0.2009 0.1987 0.2007 0.1988 0.2010 0.1987
16 0.1441 0.1452 0.1468 0.1511 0.1478 0.1478 0.1484 0.1486 0.1487 0.1486 0.1484 0.1486
20 0.1306 0.1337 0.1270 0.1276 0.1267 0.1235 0.1271 0.1242 0.1273 0.1242 0.1484 0.1243

2D Single Gaussian
In 2D, we expanded a similar normal distribution. In

order to perform this approximation, the coefficients nec-
essary increased significantly from 20 to 441 for order 20.
Because of this, the number of particles was kept low as
to not further increase the computation time. It was found
that all polynomials work well in 2D in approximating the
distribution, with an error below 3%. At 105 particles, the
coefficients have not reached convergence.

Figure 3: The 2D Gaussian distribution and their polyno-
mial approximations with n = 20 and 105 particles.

CONCLUSION
To approximate the charge distribution of a beam, we ex-

plored one- and two-dimensional distributions. In 1D, we
looked at smooth distributions such as the single Gaussian.
At the other end of the spectrum of typically used distri-
butions we considered the Uniform. In 2D we restricted
ourselves to Multinormal distributions. We obtained fairly
good results for the Gaussians, especially using Legendre
polynomials. More work done using Legendre polynomi-
als can be seen in [5]. Generally speaking, whether or not
one of the polynomials performs better than another might
be most likely specific to the function being approximated.
However, the differences are expected to be small among
the types of polynomials utilized. The best combination
seems to be a high number of particles and order number.
For example, the 1D single Gaussian returned errors be-
low 0.16% at the highest order with n = 20 and 107 to
1.5 · 107 particles. For the 2D Gaussians, this approxima-

tion method also gives the expansion and approximation
straightforwardly. In fact, it works very nicely with an er-
ror below 3% for 105 particles and n = 20, but the major
increase of the number of coefficients needed for the ap-
proximation lengthens the time of calculation considerably.
Non-smooth functionswith sharper edges, like the Uniform
distribution, require even higher numbers and may still not
be as good as those of the smoother functions. If the num-
ber of particles must be kept low, increasing the order num-
ber will still improve the approximation. Ideally, for best
results it is necessary to have a few million particles and a
truncation order of at least n = 16. This constitutes a rea-
sonable practical advice for production runs that combines
good efficiency with acceptable accuracy.
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