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Abstract

The GSI Helmholtzzentrum für Schwerionenforschung

in Darmstadt is operating the heavy-ion synchrotron SIS18

for fundamental research. Within the ring two biased

ferrite-loaded cavity resonators are installed. During the

acceleration phase their resonance frequency has to be ad-

justed to the revolution frequency of the heavy ions to re-

flect their increasing speed. To this end, a properly chosen

bias current is used to modify the differential permeability

of the ferrite material which consequently enables to adjust

the eigenfrequency of the resonator system.

The goal of the presented work is to numerically de-

termine the lowest eigensolutions of accelerating ferrite-

loaded cavities based on the Finite Integration Technique.

Since the underlying eigenmodes depend on the differen-

tial permeability, the static magnetic field generated by the

bias current has to be computed in a first step. The eigen-

modes can then be determined with the help of a dedicated

Jacobi-Davidson eigensolver. Particular emphasis is put on

the implementation to enable high performance computa-

tions based on distributed memory machines.

INTRODUCTION

For acceleration of charged particles at the heavy-ion

synchrotron at GSI two ferrite-loaded cavity resonators are

installed within the ring. The main advantage of ferrite cav-

ities is twofold [1]: On one hand, the ferrites cause a reduc-

tion of the wavelength compared to vacuum, which allows

the construction of smaller accelerating structures. On the

other hand, the resonance frequency can easily be tuned by

properly choosing a bias current and thereby modifying the

differential permeability of the ferrite material. For the SIS

18 ferrite cavity, biasing enables to alter the resonance fre-

quency in a range of about 0.8 to 5.4 MHz. The tuning is

of particular importance during the acceleration phase, in

which the resonance frequency of the cavities has to be ad-

justed to the revolution frequency of the heavy ions in order

to reflect their increasing speed.

In this paper, after briefly presenting the SIS 18 ferrite

cavity, fundamental relations relevant for the calculation of

eigenmodes of biased ferrite-loaded cavity resonators are

summarized, followed by a description of the applied nu-

merical approach. Finally, we conclude with a simple nu-

merical example.

∗Work supported by GSI
† klopfer@temf.tu-darmstadt.de

MAIN COMPONENTS OF THE SIS 18

FERRITE CAVITY

A simplified sketch of the main components of the SIS

18 ferrite cavity is shown in Fig. 1. Inside the cavity hous-

ing 64 ferrite ring cores are installed around the beam pipe.

A magnetic field is generated in these rings by means of

two different current windings: Firstly, a field constant in

time due to the bias current of up to a few hundred am-

pere, and, secondly, an additional time-harmonic compo-

nent induced via the radio frequency (RF)-coupling. As

a consequence of the RF-field, a time-harmonic voltage is

induced at the ceramic gap in the center of the resonator

structure, which provides the actual acceleration of the par-

ticle beam. Moreover, copper cooling disks are installed

between the ferrite material to remove the heat introduced

due to magnetic losses. A more detailed description of the

SIS 18 ferrite cavity can be found in Ref. [1].

∼

= ferrite ring cores
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winding
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Figure 1: Simplified sketch of the main components of the

SIS 18 ferrite cavity.

FUNDAMENTAL RELATIONS

As discussed before, the magnetic induction ~B(t) inside

the accelerating cavity can be decomposed into a static field

generated by the bias current and the time-harmonic part,

i.e.

~B(t) = µ0µbias
~Hbias + µ0

↔

µdRe
(

~Hd · e
−iωt

)

. (1)

Since the cavity is operated in a range where the bias

current is much larger than the amplitude of the RF-

component, the condition | ~Hd| ≪ | ~Hbias| is fulfilled in

good approximation. Additionally, throughout this work

the eigenvectors are calculated under the further assump-

tion that effects of hysteresis are negligible. This allows
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for a linearization of the nonlinear constitutive equation for

the ferrite material at the current working point. By modi-

fying the bias current, the static magnetic field is changed

and hence the working point on the B(H)-curve is set. As

a further implication, the differential permeability at this

working point is also adjusted. This directly allows for

a tuning of the resonance frequency of the ferrite cavity,

since, applying perfect electric boundary conditions, the

eigensolutions are determined by the fundamental relations

ǫ−1∇×
(

µ0

↔

µ
−1

d ∇× ~E(~r, t)
)

= ω2 ~E(~r, t), ~r ∈ Ω, (2)

~n× ~E(~r, t) = 0, ~r ∈ ∂Ω. (3)

Here ǫ is the permittivity,
↔

µd the differential permeability,

ω the eigenfrequency of the corresponding RF mode and

~n a normal vector on the cavity boundary ∂Ω. It is worth

emphasizing that the differential permeability tensor
↔

µd is

involved on the left hand side of equation (2). This tensor

has the following properties: Firstly, it is a fully occupied

(3× 3)-tensor, which for a bias magnetic field aligned with

the z-axis reduces to the well-known Polder tensor [2]

↔

µd =





1 + χ iκ 0
−iκ 1 + χ 0
0 0 1



 . (4)

Secondly, this tensor is non-Hermitian due to the non-

vanishing imaginary part of the parameters κ and χ in case

that magnetic losses are taken into account. This results

in complex eigenvalues. Moreover, κ and χ are functions

of both the bias magnetic field and the frequency ω. Con-

sequently, the magnetic field generated by the bias current

has to be determined at first to solve the nonlinear eigen-

problem. In order to meet these requirements a new solver

is developed, which is described in more detail in the fol-

lowing section.

COMPUTATIONAL MODEL

The current implementation is based on the Finite Inte-

gration Technique (FIT) [3] using a hexahedral staircase

mesh. For modeling the resonator structure as well as

meshing and visualization of the simulation results CST

STUDIO SUITE R© [4] is used. The field solutions are ob-

tained by a dedicated solver implemented in C / C++ and

built on PETSc (Portable, Extensible Toolkit for Scientific

Computation) [5]. The solver includes two main subcom-

ponents (cf. Fig. 2): On one hand, a magnetostatic solver

supporting nonlinear material for the computation of the

magnetic field due to the bias current, which enables to lin-

earize the constitutive equation for the ferrite material at the

current working point; on the other hand, an eigensolver for

the subsequent solution of the nonlinear eigenvalue prob-

lem.

Magnetostatic Solver

For the solution of the magnetostatic field problem

∇× ~H = ~J, (5)

Modeling and

Meshing

Visualization

CST STUDIO

SUITE R©

Magnetostatic

Solver

Eigensolver

C / C++

(PETSc)

↔

µ
−1

d

Mµ−1

Mǫ−1

~H, ~B

~E, ~D

Figure 2: Strategy for the computation of eigenmodes of

ferrite-loaded cavity resonators.

∇ ·
(

µ ~H
)

= 0, (6)

where ~J is the (bias) current density, the so-called Hi-

algorithm [6] is employed, which is based on the Helmholtz

decomposition. According to this fundamental theorem,

the magnetic field can be resolved into the sum of two fields

~H = ~Hi + ~Hh (7)

with ∇× ~Hi = ~J and ~Hh = −∇ϕ, (8)

where ϕ is a scalar potential. The Hi-algorithm hence

starts with the construction of the field ~Hi. As this vec-

tor field may be chosen arbitrarily and may, in particular,

be unphysical, a solution as simple as possible should be

preferred. For this purpose, firstly the smallest subvolume

containing all current paths is selected. Having done this,

the vector components of ~Hi are set such that the rotational

equation is trivially fulfilled on its surface. After dividing

this volume into two subvolumes, the vector components

are also set accordingly on the new surface. This is re-

peated until all vector components are set.

In the subsequent step the scalar potential is computed

by solving equation (6), which for the ansatz (7), (8) takes

the form

∇ ·
(

µ∇ϕ
)

= ∇·
(

µ ~Hi

)

. (9)

In order to reflect its nonlinear character, an iterative ap-

proach, in this work either a simple successive substitution

or the Newton method, is applied until convergence of the

value for the permeability is observed. The obtained field

solution defines the working point, at which also the perme-

ability tensor
↔

µd is constructed. Note that this linearization

of the constitutive equation for the ferrite material enters in

the subsequent eigenvalue solver.

Eigenvalue Solver

The nonlinear eigenvalue equation (2), (3) is itera-

tively solved as a sequence of linearized eigenproblems,

whose eigenvectors are calculated with a solver of Jacobi-

Davidson type [7] suited for the computation of interior
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eigenvalues. After each (nonlinear) iteration the permeabil-

ity tensor
↔

µd is reconstructed for the current estimate of the

eigenfrequency. Since the eigensolutions of subsequent it-

erations differ only slightly, all obtained eigenvectors of the

previous iteration step are reused as start vectors in the next

step, which significantly reduces the computational effort.

The convergence of eigenvalues for the Jacobi-Davidson

solver strongly depends on the preconditioner used for the

Jacobi-Davidson correction equation. In this work, the

(computationally expensive) LU decomposition is calcu-

lated at the first time the correction equation is to be solved.

Yet, for all subsequent steps satisfactory convergence is

still observed when the same preconditioner is kept, even

when used in different nonlinear iterations, if only a few

eigenvalues are desired.

PARALLEL COMPUTING

Because of the clear demand of precise calculations,

the implementation particularly aims at efficient computing

based on distributed memory machines. To this end, the de-

grees of freedom are arranged such that the topological ma-

trices and the permeability tensor have only few non-zero

components in the far off-diagonal regions of the matrix.

This directly leads to reduced communication between dis-

tinct processes and thus to a higher computation to commu-

nication ratio. For instance, the inverse of the permeabil-

ity tensor
↔

µd can be constructed fully locally without any

communication between different processes. Furthermore,

all degrees of freedom which are zero in the FIT because

they are allocated on elements outside the computation do-

main (including perfect electric conductor cells) or due to

boundary conditions are completely removed beforehand,

which positively affects load balancing.

NUMERICAL EXAMPLE

Since the realization of the magnetostatic solver for non-

linear material has successfully been tested independently,

here we focus on the verification of the nonlinear eigen-

solver. To this end, a lossless, ferrite-filled cylindrical cav-

ity resonator (radius 1 m, length 2 m) longitudinally biased

by a homogeneous static magnetic field is considered. As-

suming that its magnetic properties can be described by the

Polder tensor (cf. equation (4)), a characteristic equation

determining the resonance frequencies can be formulated

analytically [8]. For a relative permittivity of ǫr = 1, a

relative permeability of µr = 7 and a bias magnetic field

strength of Hbias = 2750 A/m, the values for the low-

est eigenfrequencies are compared with the ones obtained

numerically with the new implementation of the nonlinear

eigensolver described before. Eigenvalues are accepted if

the residual norm is below 10−9 in each linearized step and

the relative change of the eigenvalue of two subsequent

nonlinear iterations does not exceed 10−6. As suggested

by a convergence study (cf. Fig. 3), good accordance of the

numerical values with the analytical results is evident.
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Figure 3: Relative deviation of the numerically obtained

value ω to the analytical result ω0 as a function of the de-

grees of freedom (DOFs) for the four lowest eigenfrequen-

cies for a lossless, ferrite-filled cylindrical cavity resonator.

SUMMARY AND OUTLOOK

The goal of this work is the computation of eigenmodes

of biased ferrite-cavities discretized by the FIT. To this end,

the static magnetic field generated by the bias current is

calculated at first by means of a nonlinear magnetostatic

solver. Moreover, since the frequency dependence of the

permeability tensor results in a nonlinear eigenvalue prob-

lem, a dedicated solver for parallel computation on dis-

tributed memory machines has been developed. First nu-

merical results have been presented for a lossless, longi-

tudinally biased, ferrite-filled cylindrical cavity resonator.

Future work will mainly focus on the support of lossy ma-

terial and the application of the solver to the SIS 18 ferrite

cavity.
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