Collimation Studies with Hollow Electron Beams

Giulio Stancari
Fermi National Accelerator Laboratory

in collaboration with
A. Valishev, G. Annala, T. Johnson, G. Saewert, V. Shiltsev, D. Still

Thanks to Fermilab Accelerator Division and CDF and DZero collaborations for support and study time

- The hollow electron beam collimator
- Tevatron experiments and results
- Conclusions and outlook

2nd International Particle Accelerator Conference
Donostia - San Sebastián, Spain, 4-9 September 2011

Concept of hollow electron beam collimator (HEBC)

HORIZONTAL POSITION / σ

Halo experiences nonlinear transverse kicks:

$$
\theta_{r}=\frac{2 I_{r} L\left(1 \pm \beta_{e} \beta_{p}\right)}{r \beta_{e} \beta_{p} c^{2}(B \rho)_{p}}\left(\frac{1}{4 \pi \epsilon_{0}}\right)
$$

About 0.2 rrad in TEL2 at 980 GeV

$$
\begin{array}{|c}
\text { For comparison: } \\
\text { multiple scattering } \\
\text { in Tevatron collimators } \\
\theta_{\text {rms }}=17 \mu \mathrm{rad}
\end{array}
$$

Shiltsev, BEAMO6, CERN-2007-002 Shiltsev et al., EPACo8

The $15-\mathrm{mm}$ hollow electron gun

Copper anode

Yield: $\mathbf{1 . 1}$ A at 4.8 kV Profile measurements

Tungsten dispenser cathode with convex surface $15-\mathrm{mm}$ diameter, $9-\mathrm{mm}$ hole

Layout of the beams in the Tevatron

Layout of the beams in the Tevatron electron lens

Transverse separation is 9 mm

Pulsed electron beam can be synchronized with any group of bunches

The conventional multi-stage collimation system

Goals of collimation:

- reduce beam halo

Implementations:

- primary collimators
- Tevatron: $5-\mathrm{mm}$ W at 5σ
- LHC: o.6-m carbon jaws at 6σ
- secondary collimators
- Tevatron: $1.5-\mathrm{m}$ steel jaws at 6σ
- LHC: 1-m carbon/copper at 7o

Advantages:

- robust
- efficient

Limitations:
- leakage
- impedance
- loss spikes during setup
- losses due to beam jitter

```
R. Assmann
```


1-dimensional diffusion cartoon with hollow electron beam

A good complement to a two-stage system for high intensities?

- Can be close to or even overlap with the main beam
- no material damage
- tunable strength ("variable thickness")
- Works as "soft scraper" by enhancing diffusion
- Low impedance
- Resonant excitation is possible (pulsed e-beam)
- No ion breakup
- Position control by magnetic fields (no motors or bellows)
- Established electron-cooling / electron-lens technology
- Critical beam alignment
- Control of hollow beam profile
- Beam stability at high intensity
- Cost
- Started in October 2010
- 19 experiments so far: parasitic and dedicated
- Measured many observables vs. main factors: beam current, relative alignment, hole size, pulsing pattern, collimator configuration:
- overall particle removal rate
- effects on the core and on unaffected bunches
- removal rate vs. particle amplitude
- enhancement of transverse beam diffusion
- collimation efficiency
- fluctuations in loss rates
- A few examples shown here

Electrons acting on 1 antiproton bunch train (\#2, A13-A24)

Is the core affected? Are particles removed from the halo?

Several strategies:

- No removal when e-beam is shadowed by collimators (previous slide)
- Check emittance evolution
- Compare intensity and luminosity change when scraping antiprotons:

$$
\mathcal{L}=\left(\frac{f_{\mathrm{rev}} N_{b}}{4 \pi}\right) \frac{N_{p} N_{a}}{\sigma^{2}} \quad \frac{\Delta \mathcal{L}}{\mathcal{L}}=\frac{\Delta N_{p}}{N_{p}}+\frac{\Delta N_{a}}{N_{a}}-2 \frac{\Delta \sigma}{\sigma}
$$

- same fractional variation if other factors are constant
- luminosity decreases more if there is emittance growth or proton loss
- luminosity decreases less if removing halo particles (smaller relative contribution to luminosity)
- Removal rate vs. amplitude (collimator scan, steady state)
- Diffusion rate vs. amplitude (collimator scan, time evolution of losses)

Luminosity of affected bunch train relative to other 2 trains

Diffusion rate vs. amplitude from collimator scans

- First measurement of diffusion rates in Tevatron
- $D \sim J^{4.5}$
\Rightarrow see Stancari et al., TUPZo33 (this conference)
- arXiv:1108:5010

Electrons (0.9 A) on pbar train \#2, 4.25σ hole Example of vertical collimator step out, $50 \mu \mathrm{~m}$

Correlation of steady-state losses

- Hollow beam eliminates correlations among trains
- Interpretation: larger diffusion rate, lower tail population, less sensitive to jitter

Summary and outlook

- Hollow electron beams open up new options for beam scraping in high-intensity storage rings and colliders
- Many observations at the Tevatron: compatibility with collider operations, halo removal rates, effects on core, diffusion, fluctuations in losses, collimation efficiencies, ...
- First results in Phys. Rev. Lett. 107, 084802 (2011); arXiv:1105.3256
- A few more studies planned
- New 1-inch, 3-A gun assembly and test
- Validate Tevatron simulations against collected data
- TEL2 hardware will become available after Tevatron shutdown
- Transfer experimental program to CERN? Support from DOE LARP Review and LHC Collimation Review (June 2011).
- Study applicability to LHC in collaboration with CERN: needed? feasible? Possible improvements: scraping before collisions and collimator setup, efficiency for ions.

Backup

Removal rate vs. amplitude from collimator scan

Electrons (0.15 A) on pbar train \#2, 3.5σ hole (1.3 mm at collimator) Vertical scan of primary collimator (others retracted)

Diffusion rate vs. amplitude from collimator scans

New gated antiproton loss monitors

- Scintillator paddles installed near F49 antiproton absorber
- Gated to individual bunch trains
- Logged at 15 Hz

For simultaneous measurements of diffusion rates, collimation efficiency, and loss spikes on affected and control bunch trains at maximum electron currents

Design of larger (1-inch) hollow gun

- 25 mm outer diameter, 13.5 mm inner diameter
- Up to 3 A at 5 kV

- Goal: To test technical feasibility
- Characterization in Fermilab electron-lens test stand

