‡ Fermilab

Fermi National Accelerator Laboratory Office of Science / U.S. Department of Energy Managed by Fermi Research Alliance, LLC

Collimation Studies with Hollow Electron Beams

Giulio Stancari Fermi National Accelerator Laboratory

in collaboration with A. Valishev, G. Annala, T. Johnson, G. Saewert, V. Shiltsev, D. Still

Thanks to Fermilab Accelerator Division and CDF and DZero collaborations for support and study time

→ The hollow electron beam collimator

- Tevatron experiments and results
- Conclusions and outlook

2nd International Particle Accelerator Conference Donostia - San Sebastián, Spain, 4-9 September 2011

Concept of hollow electron beam collimator (HEBC)

Halo experiences nonlinear transverse kicks:

$$\theta_r = \frac{2 I_r L \left(1 \pm \beta_e \beta_p\right)}{r \beta_e \beta_p c^2 (B\rho)_p} \left(\frac{1}{4\pi\epsilon_0}\right)$$

About **0.2 µrad** in TEL2 at 980 GeV

For comparison: multiple scattering in Tevatron collimators $\theta_{\rm rms} = 17 \ \mu {\rm rad}$

Shiltsev, BEAM06, CERN-2007-002 Shiltsev et al., EPAC08

The 15-mm hollow electron gun

G. Stancari (Fermilab)

Collimation studies with hollow electron beams

IPAC11: 7 Sep 2011 3

Layout of the beams in the Tevatron

Layout of the beams in the Tevatron electron lens

Transverse separation is 9 mm

 2
 A: 26.2 V

 MODULATOR (4 kV/V)
 P1

 P2
 P3

 TEL2 PICKUP

 A13

 A14

 A15

 COLLECTOR (1 A/V)

500mV Ω M 200ns A Ch4 J 1.80 V

→▼ 8.17200µs

Pulsed electron beam can be synchronized with any group of bunches

HORIZONTAL POSITION (mm)

200mV Ω Ch2

5.00 V

200mV Ω

Ch1

13 Oct 20

The conventional multi-stage collimation system

G. Stancari (Fermilab)

Collimation studies with hollow electron beams

IPAC11: 7 Sep 2011 6

1-dimensional diffusion cartoon of collimation

1-dimensional diffusion cartoon with hollow electron beam

G. Stancari (Fermilab)

- Can be close to or even overlap with the main beam
 - no material damage
 - tunable strength ("variable thickness")
- Works as "soft scraper" by enhancing diffusion
- Low impedance
- Resonant excitation is possible (pulsed e-beam)
- No ion breakup
- Position control by magnetic fields (no motors or bellows)
- Established electron-cooling / electron-lens technology
- Critical beam alignment
- Control of hollow beam profile
- Beam stability at high intensity
- ► Cost

- Started in October 2010
- ▶ 19 experiments so far: parasitic and dedicated
- Measured many **observables** vs. main <u>factors</u>: beam <u>current</u>,
- relative <u>alignment</u>, <u>hole size</u>, <u>pulsing pattern</u>, <u>collimator configuration</u>:
 - overall particle removal rate
 - effects on the core and on unaffected bunches
 - removal rate vs. particle amplitude
 - enhancement of transverse beam diffusion
 - collimation efficiency
 - fluctuations in loss rates
- A few examples shown here

Electrons acting on 1 antiproton bunch train (#2, A13-A24)

G. Stancari (Fermilab)

Removal rate: affected bunch train relative to other 2 trains

Several strategies:

- ▶ **No removal** when e-beam is shadowed by collimators (previous slide)
- Check emittance evolution
- Compare **intensity** and **luminosity** change when scraping antiprotons:

$$\mathcal{L} = \left(\frac{f_{\text{rev}}N_b}{4\pi}\right)\frac{N_pN_a}{\sigma^2} \qquad \qquad \frac{\Delta\mathcal{L}}{\mathcal{L}} = \frac{\Delta N_p}{N_p} + \frac{\Delta N_a}{N_a} - 2\frac{\Delta\sigma}{\sigma}$$

- <u>same fractional variation</u> if other factors are constant
- Iuminosity decreases more if there is emittance growth or proton loss
- luminosity decreases <u>less</u> if removing halo particles (smaller relative contribution to luminosity)
- **Removal rate** vs. amplitude (collimator scan, steady state)
- **Diffusion rate** vs. amplitude (collimator scan, time evolution of losses)

Emittances of affected bunch train

Luminosity of affected bunch train relative to other 2 trains

G. Stancari (Fermilab)

Collimation studies with hollow electron beams

Diffusion rate vs. amplitude from collimator scans

G. Stancari (Fermilab)

Collimation studies with hollow electron beams

IPAC11: 7 Sep 2011 16

Diffusion rate vs. amplitude - preliminary

Vertical collimator position, y_c [mm]

- First measurement of diffusion rates in Tevatron
 D ~ J^{4.5}
 - ⇒ see Stancari et al., TUPZ033 (this conference)
 ⇒ arXiv:1108:5010

New gated loss monitors during collimator scan

Electrons (0.9 A) on pbar train #2, 4.25σ hole Example of **vertical collimator step out**, 50 μm

G. Stancari (Fermilab)

Fourier analysis of losses

Correlation of steady-state losses

Hollow beam eliminates correlations among trains
Interpretation: larger diffusion rate, lower tail population, less sensitive to jitter

G. Stancari (Fermilab)

Summary and outlook

- ▶ Hollow electron beams open up new options for beam scraping in high-intensity storage rings and colliders
- ▶ Many observations at the Tevatron: compatibility with collider operations, halo removal rates, effects on core, diffusion, fluctuations in losses, collimation efficiencies, ...
- First results in *Phys. Rev. Lett.* **107**, 084802 (2011); arXiv:1105.3256
- A few more studies planned
- New 1-inch, 3-A gun assembly and test
- Validate Tevatron simulations against collected data
- ▶ TEL2 hardware will become available after Tevatron shutdown
- ▶ Transfer experimental program to CERN? Support from DOE LARP Review and LHC Collimation Review (June 2011).
- ▶ Study applicability to LHC in collaboration with CERN: needed? feasible? Possible improvements: scraping before collisions and collimator setup, efficiency for ions.

Thank you for your attention

Backup

Removal rate vs. amplitude from collimator scan

Electrons (0.15 A) on pbar train #2, 3.5 σ hole (1.3 mm at collimator) Vertical scan of primary collimator (others retracted)

Time (h)

Diffusion rate vs. amplitude from collimator scans

- Scintillator paddles installed near F49 antiproton absorber
 Gated to individual bunch trains
- ▶ Logged at 15 Hz

For <u>simultaneous measurements</u> of **diffusion rates**, **collimation efficiency**, and **loss spikes** on <u>affected and control bunch trains</u> at maximum electron currents

G. Stancari (Fermilab)

Design of larger (1-inch) hollow gun

- > 25 mm outer diameter, 13.5 mm inner diameter
- ▶ Up to 3 A at 5 kV

- ▶ Goal: To test technical feasibility
- Characterization in Fermilab electron-lens test stand