sFLASH

PRESENT STATUS AND COMMISSIONING RESULTS

2nd International Particle Accelerator Conference

San Sebastian

06/09/2011

on behalf of the sFLASH group

Velizar Miltchev

Hamburg University

•Supported by BMBF under contract 05 ES7GU1 •DFG GrK 1355

Deutsche Forschungsgemeinschaft

Joachim Herz Stiftung

Outline

- 1. Motivation and introduction to sFLASH-layout
- 2. Commissioning results
- linac set up
- transverse, longitudinal and frequency overlap
- SASE performance
- HHG-source performance
- 3. Summary and outlook

Motivation

goals:

- \Rightarrow high shot-to-shot stability and high peak power (GW level)
- \Rightarrow generation of fully coherent pulses
- \Rightarrow wavelength range < 40 nm
- \Rightarrow reduction of saturation length
- \Rightarrow Temporal stability for pump probe experiments on *fs* scale

Motivation

- **spatial overlap** between electron bunch and HHG pulse
- $\Rightarrow \Delta x, \Delta y < 100 \ \mu m, \ \Delta x', \ \Delta y' < 100 \ \mu rad$
- **stable HHG parameters** (pulse energy, chirp, frequency ...)
- sub-100 fs temporal overlap between electron bunch and laser pulse
- wavelength overlap $\Delta\lambda/\lambda \le 2e-3$ @ 38 nm

Requred electron bunch parameters

- Normalized transverse emittance $< 3 \mu m$,
- Peak current > 1kA
- Energy chirp < 0.1MeV/ μ m, slice energy spread σ_{E}/E < 2e-3
- Nominal conditions: I≈1.5 kA, E≈700 MeV

FLASH layout

sFLASH building blocks

hutch for first experiments with sFLASH pulses

Ti: Sa laser system and HHG source

sFLASH building blocks

sFLASH building blocks

HHG source schematic

HHG injection beamline

HHG injection beamline

courtesy J. Boedewadt

V. Miltchev, IPAC'11, 06.09.2011

HHG seed characterization

- Full HHG energy at the undulator \approx 0.4 nJ (the best case with 20% transmission)
- HHG energy coupled to electron beam \approx 0.016 nJ (due to $\sigma_{HHG} >> \sigma_{e \text{ beam}}$)
- Effective seed power \approx 800 W. Shot noise power \sim 100 W
- Photon diagnostics integrates over radiation pulse→
 Energy contrast ~1 ⇒ difficult to demonstrate seeding

HHG seed characterization

- Full HHG energy at the undulator \approx 0.4 nJ (the best case with 20% transmission)
- HHG energy coupled to electron beam \approx 0.016 nJ (due to $\sigma_{HHG} >> \sigma_{e \text{ beam}}$)
- Effective seed power \approx 800 W. Shot noise power \sim 100 W
- Photon diagnostics integrates over radiation pulse→
 Energy contrast ~1 ⇒ difficult to demonstrate seeding

Undulator commissioning

- Four planar variable-gap undulators of 10m total length with period of 31.4mm and 33mm
- Wire scanners, OTR stations, YAG screens, BPMs in undulator intersections
- Two air coils per undulator to compensate the residual field integrals
- Magnetic measurements and tuning performed at a measurement bench

Undulator commissioning

Beam position as a function of the gap of the first sFLASH-undulator 0.6 \checkmark \Rightarrow Tolerable impact on the orbit for any undulator gap 0.4 ∆x [mm] 0.2 0 -0.2 20 40 60 80 100 120 140 160 180 200 gap [mm] 0.15 0.1 ∆y [mm] 0.05 0 -0.05 0 20 60 80 100 120 140 160 200 40 180 gap [mm]

Linac set up

V. Miltchev, IPAC'11, 06.09.2011

Linac set up

Linac set up

V. Miltchev, IPAC'11, 06.09.2011

Concept for finding the transverse overlap

XUV beam profiles

Concept for finding the transverse overlap

Superimposed beam profiles measured on Ce:YAG screen

Concept for finding the temporal overlap

- 1) Streak camera measurement using spontaneous undulator radiation and HHGdrive laser $\rightarrow 0.5$ ps resolution
- 2) Modulator-radiator based system using coherent light from the radiator $\rightarrow <100$ fs

Coarse temporal overlap

Temporal overlap (~ 0. 5 ps) between the HHG drive laser pulse and spontaneous undulator radiation measured with the streak camera

Demonstration of sub-100 fs temporal overlap

(left)-Measurement of the intensity of the emitted coherent radiation as a function of the relative delay (25 fs step) of the IR-pulse. The temporal overlap between the IR-light and the electron bunch enhances the radiation intensity.

(right)-Longitudinal charge distribution measured with transverse deflecting cavity. To be compared with the measurement in the left.

Demonstrating the frequency overlap

(left) Single-shot spectra of the SASE-radiation.

(right) Single-shot spectra of the HHG seed.

The red curve is the average over all single shots.

sFLASH-SASE

> Mandatory! Proofs, that the FEL-amplifier works at the right wavelength with sufficient gain in linear regime(1e5-1e6)

V. Miltchev, IPAC'11, 06.09.2011

- sFLASH fully commissioned (300 hours FLASH beamtime)
- {X,Y,X',Y',t, λ } overlap demonstrated
 - ✓ $\Delta X, \Delta Y < 50 \mu m$, $\Delta X', \Delta Y' < 50 \mu rad$
 - ✓ ∆t < 100 fs
 - $\checkmark \Delta \lambda / \lambda < 0.001$
- sFLASH-SASE achieved on regular basis
- HHG-source generates up to 2nJ@38 nm

sFLASH upgrade (starting September 2011)

- 1-stage 800 nm compressor \rightarrow ~3 times more energy in IR
- Adaptive optics in injection beamline \rightarrow improved coupling
- Additional XUV-diagnostics \rightarrow online HHG characterization after injection
- Resume operation beginning 2012