Lattice Design of a Very Low-emittance Storage Ring for SPring-8 II

Y. Shimosaki, K. Soutome, J. Schimizu, K. Kaneki, M. Takao, T. Nakamura and H. Ohkuma

JASRI / SPring-8

3rd Generation Synchrotron Radiation Facility (1450 m)

Agenda

1. Introduction of SPring-8 II

- 1.1 SPring-8 v.s. SPring-8 II
- **1.2 Lattice Structure**
- **1.3** Injection Scheme
- 2. Strategy of Lattice Design for Dynamic Aperture Correction
 - 2.1 Strategy for Lattice Design
 - 2.2 Example of Dynamic Aperture Enlargement

3. Latest Results of Lattice Design

3.1 Dynamic Aperture and Momentum Aperture without / with Sx-Alignment Error

4. Summary

SPring-8 v.s. SPring-8 II

<u>Ultimate Goal of SPring-8 II</u>: To provide 10³ times higher brilliance than that of SPring-8 (0.5 ~ 100 keV).

SPring-8 v.s. SPring-8 II

	SPring-8	SPring-8 II (Latest design)
Electron energy	8 GeV	6 GeV
Stored current	100 mA	300 mA
Lattice	Double Bend (2B)	6 Bend Achromat (6BA)
Natural emittance	3400 pm.rad	67.5 pm.rad (w/o D.W.)
		10 ~ 20 pm.rad (w/ D.W.)
Tune (x, y)	(40.14, 18.35)	(141.865, 36.65)
Natural chrom.	(-88, -42)	(-475, -191)
Power loss	9 MeV (Bend) 2 MeV (ID)	4 MeV (Bend) 2 + 4 MeV (ID + D.W.)
Max. B	0.68 T	0.70 T
Max. Q: Β'L / Β ρ	0.40 m ⁻¹	1.65 m ⁻¹
Max. Sx: B"L / Β ρ	6.44 m ⁻²	114 m ⁻²

Lattice Structure of SPring-8 II

6BA lattice function

Injection Scheme of SPring-8 II

For stable user operation, <u>off-axis injection</u> is required not only for <u>top-up operation</u>, but also for <u>nominal accumulation</u>.

Poster (TUPC095): Nakamura, "Bucket-bybucket On/Off-axis Injection with Variable Field Fast Kicker".

<u>Agenda</u>

- **1. Introduction of SPring-8 II**
 - 1.1 SPring-8 v.s. SPring-8 II
 - **1.2 Lattice Structure**
 - **1.3** Injection Scheme

2. Strategy of Lattice Design for Dynamic Aperture Correction

- 2.1 Strategy for Lattice Design
- 2.2 Example of Dynamic Aperture Enlargement

3. Latest Results of Lattice Design

3.1 Dynamic Aperture and Momentum Aperture without / with Sx-Alignment Error

4. Summary

Our Strategy of Lattice Design

Iteration (tune survey, etc)

(Non-)interleaved Sextupole

- I transformation

Example of DA Enlargement

<u>Comparison DA between Conventional & Our design</u> w/ Sx-Align. Error (Gaussian, 2σ cut, σ = 5µm, no correction)

(Conventional) Dynamic aperture. Nat.Chrom.: (-595, -193) Max. Sx: 136 m⁻² (Our design) Dynamic aperture Nat.Chrom.: (-475, -191) Max. Sx: 114 m⁻²

<u>Agenda</u>

- 1. Introduction of SPring-8 II
 - 1.1 SPring-8 v.s. SPring-8 II
 - **1.2 Lattice Structure**
 - **1.3** Injection Scheme
- 2. Strategy of Lattice Design for Dynamic Aperture Correction
 - 2.1 Example of Dynamic Aperture Shrinking
 - 2.2 Strategy for Lattice Design
 - 2.3 Example of Dynamic Aperture Enlargement

3. Latest Results of Lattice Design

3.1 Dynamic Aperture and Momentum Aperture without / with Sx-Alignment Error

4. Summary

Dynamic Aperture

Without error in lattice

Dynamic Aperture

w/ Sx-Align. Error (Gaussian, 2o cut, no correction)

Momentum Aperture

w/o & w/ Sx-Align. Error (Gaussian, 2o cut, no correction)

Momentum Aperture dependent on RF voltage Momentum Aperture dependent on error <u>Summary</u>

1. Design study of SPring-8 II is in progress.

- 2. Following strategy is adopted for DA correction:
 - Linear optics as <u>low natural chromaticity</u>.
 - Harmonic method with (non-)interleaved Sx for correcting nonlinear resonances without ∆p/p, nonlinear resonances for off-momentum,
 - and higher order resonances for on-momentum.
- 3. Large DA and MA for very-low ε ring (67.5 pm.rad @ 6GeV): $x \sim \pm 5 \text{ mm} (\sim 120 \sigma_x) \text{ and MA} \sim \pm 2.7 \% \text{ for ideal ring,}$ $\sim \pm 2.5 \text{ mm} (\sim 60 \sigma_x) \qquad \sim \pm 2.1 \% \text{ with alignment error.}$ $(\sigma = 5 \mu \text{m for Sx})$ $\sim \pm 1.8 \text{ mm} (\sim 48 \sigma_x) \qquad \sim \pm 1.8 \% \text{ with } \sigma = 10 \mu \text{m} (\text{Sx})$
- 4. We will study additional aperture enlargement, ID's effects, correction scheme against errors, etc, in detail.

Feasibility Study of SPring-8 II

Lattice (TUOAB01) : My Talk.

Overview of project: Watanabe et al., "Current Status of SPring-8 Upgrade (THPC031) Plan".

- Injection (TUPC095) : Nakamura, "Bucket-by-bucket On/Off-axis Injection with Variable Field Fast Kicker".
- Short bunch: Masaki et al., "A Proposal of Short X-ray Pulse(THPC028)Generation from Compressed Bunches by mm-wave
iFEL in the SPring-8 Upgrade Plan".

(c.f.)

Magnet / Vacuum (THPC143)

: Fukami et al., "Beam-based Alignment for Injection Bump Magnets of the Storage Ring using Remote Tiltcontrol System".

For Question

Damping Wiggler

IBS and Lifetime

Tolerance from DA (when <u>no correction</u>)

	Tolerance from DA
Q field error	10-4
Sx field error	10-4
Q alignment error (σ)*	1 μm (?)
Sx alignment error (σ)	10 μm

* Q-align.-error-induced-COD is not acceptable for Sx.

COD correction within tolerance of Sx alignment error (σ = 10 μ m) has been studied with

- Remote controlled x-y stage for magnets,
- COD correction by beam-based-alignment,
- Automatic COD correction, etc.

Number of Magnet family

	SPring-8	SPring8 II
В	1	2
Q	14	13
Sx	9	12

Examination of Multi-bend Lattice for SPring-8 II

Design of Low Natural-Chromaticity Lattice

"Unit cell of 6BA"= 4 x "Minimum Emittance (ME) part" + 2 x "Matching part (achromat, β)"

D.Einfeld and M.Plesko, NIMA 335, 402(1993).

Position and strength of B and Q are numerically determined as low natural-chromaticity at each part.

