

Research and Development of Novel Advanced Materials for Nextgeneration Collimators

<u>A. Bertarelli,</u> G. Arnau Izquierdo, F. Carra, A. Dallocchio, M. Gil Costa, N. Mariani

CERN, Geneva, Switzerland

IPAC 2011 – Donostia/San Sebastián, Spain 08.09.2011

What is a (Phase I) LHC collimator

SC magnets and particle physics exp.

IPAC 2011 - 08.09.2011

Alessandro Bertarelli - CERN

What is a (Phase I) LHC Collimator

Robustness Test at 450 GeV, 3.2x10¹³ protons per shot

- Incention System Incent • 5 full intensity shots ranging
- Each impact energy equivalent

carbon jaw

IPAC 2011 - 08.09.2011

mir

Graphite jaw

Limits of Phase I Collimators

Figures of Merit

Five **Figures of Merit** have been identified to classify and rank candidate materials

- Electrical Conductivity
- Ate indicators are somehow self-conflicting. These indicators are somehow self-conflicting.
 - Can we try and combine properties of diverse

Z

... andard" requirements include ...

anon Hardness, UHV Compatibility, Industrial producibility of large components (up to 400x80x25 mm³), Possibility to machine, braze, join, coat ..., Limited brittleness

 T_m

Metal-diamond Composites

- Metal-diamond composites are advanced thermal management materials combining properties of Diamond (high *k*, low *ρ* and low *CTE*) with those of Metals (strength, *γ*, etc.).
- Sintering techniques include **Rapid Hot Pressing (RHP)**, aka Spark Plasma Sintering **(SPS)**, and **Liquid Infiltration**.
- Candidate materials include Copper-diamond (Cu-CD), Silver-diamond (Ag-CD) and Molybdenum-diamond (Mo-CD)

IPAC 2011 - 08.09.2011

Alessandro Bertarelli - CERN

7

Material	C-C	Мо	Glidcop ®	Cu-CD	Ag-CD	Mo-CD
Density [kg/m ³]	1650	10220	8900	~5400	~6100	~6900
Atomic Number (Z)	6	42	29	~11.4	~22.4	~17.3
T _m [°C]	3650	2623	1083	~1083	~840	~2623
SSNI [kWm²/kg]	24	2.6	2.5	13.1 ÷ 15.3	11.4 ÷ 15.4	6.9 ÷ 10.9
TSNI [kJ/kg]	793	55	35	44 ÷ 51	60 ÷92	72 ÷ 96
Electrical Conductivity [MS/m]	0.14	19.2	53.8	~12.6	~11.8	~9.9
	worse				better	

- **C-C** stands out as to thermo-mechanical performances. Adversely outweighed by poor electrical conductivity, low Z, expected degradation under irradiation.
- **High-Z metals** (**Cu**, **Mo**) possess very good electrical properties. High density adversely affects their thermal stability and accident robustness.
- **Metal-diamond composites** exhibit a balanced compromise between TSNI, SSNI, electrical conductivity , density, atomic number.
- Mo-CD limits the consequences of high temperatures induced by very intense beam impacts

Cu-CD Composites

• Cu-CD developed by RHP-Technology (spin-off of Austrian Institute of Technology), Austria

EUCARD

- Characterized in the frame of EuCARD / ColMat collaboration
- R&D objectives:

FRN

• Geometrical stability

- Electrical conductivity
- Intermediate density
- Produced by RHP under N₂ + H₂ Atmosphere
- 60% Diamond, 40% Cu
- Small addition of Boron
- Sintering T $\sim 1000^{\circ}$ C
- Good homogeneity and compaction rate (~95%)

Courtesy: **E. Neubauer, M. Kitzmantel** – RHP-Tech

Cu-CD Composites

 No diamond degradation (in reducing atmosphere graphitisation starts at ~ 1300 °C)

EUCARD

Good thermal (~490 W/mK) and electrical conductivity (~12.6 MS/m).

No direct interface between Cu and CD (lack of affinity). Limited bonding surface assured by Boron Carbides hampers mechanical strength (~120 MPa).

BC brittleness adversely affects material toughness.

Cu low melting point (**1083** °**C**) limits Cu-CD applications for highly energetic accidents.

CTE increases significantly with T due to high Cu content (from ~6 ppmK⁻¹ at RT up to ~12 ppmK⁻¹ at 900 °C)

Ag-CD Composites

- Developed by **EPFL**, Switzerland.
- Characterized at EPFL and CERN (EuCARD).
- Manufactured by Liquid Infiltration of cylindrical samples (Ø100 mm, H 100 mm)
- ~60% Diamond, ~40% Ag-Si alloy
- Excellent bonding between Ag and CD assured by Silicon Carbides formation on diamond.
 - High Flexural Strength (~500 MPa) and toughness.
- High Electrical Conductivity.
- Max T_{Service} limited by low-melting eutectic phase Ag-Si (**840** °**C**).
- Hard to manufacture large components (>100 mm)
- Material non homogeneities due to liquid metal infiltration intrinsic limitations.

- Co-developed by **CERN** and a SME, **Brevetti Bizz**, Verona, Italy •
- R&D objectives :
 - **Decrease** pure Mo **density** to optimize deposited energy distribution
 - Increase mechanical properties w.r.t. other Metal-CD
 - Increase thermal stability and robustness at high temperatures
- Manufactured through RHP
- Mo and CD create a good interface by forming Mo Carbides.
- Large components can be produced.

BREVETTI BIZZ

- High sintering T of Mo (~1700 °C) leads to diamond graphitisation. 2 alternative processes:
 - Assisted Solid-state Sintering (ASS)
 - Liquid Phase Sintering (LPS)

BREVETTI BIZZ

Mo-CD Composites

Liquid Phase Sintering (LPS)

Addition of low-melting phase (Cu or Cu-Ag) to fill in the pores between Mo and CD

- Good mechanical strength (400+ MPa) and Thermal Conductivity (185 W/mK)
- Max T_{Service} limited by low-melting phase (Cu)

Assisted Solid-state Sintering (ASS)

- Addition of small amounts of activating elements (Ni, Pd) enhances Mo sintering at low T (~1300 °C)
- Absence of low-melting phase increases service T up to $\sim 2600 \,^{\circ}\text{C}$
- Large diamond particles interfere with Mo compaction.
- Diamond graphitization not fully avoided.

 Mo-Pd Matrix

 Reaction layer:

 Molybdenum Carbides

 Synthetic Diamond

 Bynthetic Diamond

IPAC 2011 - 08.09.2011

Alessandro Bertar

Studied material comparison

- A single, comprehensive comparison of characterized materials is proposed on the basis of normalized Figures of Merit.
- Needless to say, any choice of Figures of Merit, of their combination and target values is arbitrary ...
- This said, this comparison confirms that Mo-CD is, so far, the best candidate.

Simulations and Testing

RUSSIAN RESEARCH CENTRE

EUCARD

• Irradiation damage tests at RRC-KI and GSI.

- Preliminary results from GSI on Cu-CD show no degradation of Cu/CD interface. Defects in CD lattice seem to occur.
- Advanced simulations being performed at CERN and Polito on materials under extreme conditions.
- Beam tests in CERN's **HiRadMat** to experimentally assess material models.

Courtesy: M. Tomut -

GSI

IPAC 2011 - 08.09.2011

Conclusions

- Bringing LHC beyond nominal performances might require new generation collimators embarking novel advanced materials.
- Metal-diamond composites are particularly appealing as they promise to combine diamond and metal properties.
- Figures of Merit were defined, allowing to pinpoint "best" candidates and to set ambitious goals.
- An intense R&D program has been launched at CERN with partners partly within the EuCARD collaboration
- Cu-CD, Mo-CD and Ag-CD were studied and successfully produced. Size challenge has been met for Cu-CD and Mo-CD.
- A large characterization effort has been carried out: a magic material does not exist, but Mo-CD seems to stand out as a balanced compromise between key parameters.
- Radiation hardness assessment is ongoing for selected materials. Beam tests under extreme conditions are foreseen at CERN's HiRadMat facility.
- The R&D program is still in full progress.

Acknowledgements

This work would have been impossible without the contributions of many people:

KURCHATOV INSTITUTE

RUSSIAN RESEARCH CENTRE

S. Bizzaro, Brevetti Bizz

BREVETTI BIZZ

R. Assmann, E. Berthomé, V. Boccone, F. Cerutti, M. Guinchard, CERN

L. Weber, EPFL

M. Tomut, GSI

L. Peroni, M. Scapin, Politecnico di Torino

M. Kitzmantel, E. Neubauer, RHP-Technology

A. Ryazonov, RRC-Kurchatov Institute