

Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

Outline

IPAC11

- · CEBAF Overview
- Analytical Model
- Experimental Setup
- ARC1 Beamline
- Sextupole Measurements
- Beam Position Monitor Nonlinearity
- ARC1 Dipole Measurements
- Future Measurements
- Summary

Aerial View

- 5-pass CW Electron Accelerator
- Three user facilities (A, B, C)
- CW Polarized Source
- >85% Polarization
- Two 1497 MHz Linacs
- Two Recirculation Arcs
- Operating at 6 GeV
- Now being upgraded to 12 GeV

CEBAF Overview

IPAC11

Introduction

- Modulate the beam with two AC dipoles at two different frequencies
- Record time domain data at 8 Beam Position Monitors within a CEBAF ARC
- Perform Fast Fourier Transform of BPM data
- Linear system will just have kick frequencies with amplitudes that depend on the phase advance of the lattice
- Nonlinear fields will produce harmonics of the kick frequencies

$$X_{k1-} = X'_{k1-} = 0$$

$$X_{k1+} = 0$$

$$X'_{k1+} = A_1 \cos \omega_1 t$$

$$X_{k1-} = X_{k1-}' = 0$$

$$X_{k1+} = 0$$

$$X'_{k1+} = A_1 \cos \omega_1 t$$

 $X_{k2+} = L_{12}A_1\cos\omega_1 t$

$X'_{k2+} = L_{22}A_1\cos\omega_1 t + A_2\cos\omega_2 t$

$$B_x = \frac{2B_0}{a^2} xy$$

$$B_{y} = \frac{B_{0}}{a^{2}}(x^{2} - y^{2})$$

 $X_{s+} = (ML)_{12} A_1 \cos \omega_1 t + M_{12} A_2 \cos \omega_2 t$

$$X'_{s+} = (ML)_{22} A_1 \cos \omega_1 t + M_{22} A_2 \cos \omega_2 t + ((ML)_{12})^2 A_1^2 \cos^2 \omega_1 t + 2(ML)_{12} (M_{12}) A_1 A_2 \cos \omega_1 t \cos \omega_2 t + (M_{12})^2 A_2^2 \cos^2 \omega_2 t$$

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\cos(A-B) = \cos A \cos B + \sin A \sin B$ $\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B) \right]$ $\cos^2 A = \frac{1}{2} \left[1 + \cos 2A \right]$

$$X_{s+} = (ML)_{12} A_1 \cos \omega_1 t + M_{12} A_2 \cos \omega_2 t$$

$$X'_{s+} = (ML)_{22} A_1 \cos \omega_1 t + M_{22} A_2 \cos \omega_2 t + ((ML)_{12})^2 A_1^2 \frac{1}{2} [1 + \cos 2\omega_1 t] + (ML)_{12} (M_{12}) A_1 A_2 [\cos(\omega_1 + \omega_2) t + \cos(\omega_1 - \omega_2) t] + (M_{12})^2 A_2^2 \frac{1}{2} [1 + \cos 2\omega_2 t]$$

Kick frequencies for these tests were chosen to be 1 Hz and 21 Hz

Kick frequencies for these tests were chosen to be 1 Hz and 21 Hz

Octupole Frequencies
$$\omega_1 = 1 \ \text{Hz}$$
 $\omega_2 = 21 \ \text{Hz}$ $3\omega_1 = 3 \ \text{Hz}$ $3\omega_2 = 63 \ \text{Hz}$ $\omega_2 + 2\omega_1 = 23$ $\omega_2 - 2\omega_1 = 19$ $2\omega_2 + \omega_1 = 43$ $2\omega_2 - \omega_1 = 41$

Experimental Equipment

Data Acquisition System

IPAC11

Kicker Magnets

ARC1 Beamline

Arc1 Optics

Arc1 Optics

Simulation and Measurements

IPAC11

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

Spectrum vs. Sextupole Strength

1A16 BPM After Sextupole

10⁴

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

U.S. DEPARTMENT OF ENERGY

Spectrum vs. Sextupole Strength

Spectrum vs. Sextupole Strength

1A16 BPM After Sextupole 10⁴ 1000 G/cm 10^{3} Amplitude 10^{2} 10¹ 20 25 30 Π 10 35 5 15 40 45 50 Frequency (Hz)

Amplitudes vs. Sextupole Strength

Dipole Measurements

- Local orbit bump to offset the beam within the dipoles
- Measurements made at 1 mm steps in transverse direction from the reference orbit out to 1 cm

ARC1 Dipole Hall Probe Data

- Dipoles also measured at the Magnet Measurement Facility with a Hall Probe stepper
 - 21 tracks through the dipoles at 0.5 mm spacing
 - Measurements made every 2 mm along the tracks to create a grid of points
 - Multipole fields calculated along curved trajectories

$$X_{rot} = k_{x} \frac{\left(X^{+} - X_{off}^{+}\right) - \alpha_{x}\left(X^{-} - X_{off}^{-}\right)}{\left(X^{+} - X_{off}^{+}\right) + \alpha_{x}\left(X^{-} - X_{off}^{-}\right)} \qquad Y_{rot} = k_{y} \frac{\left(Y^{+} - Y_{off}^{+}\right) - \alpha_{y}\left(Y^{-} - Y_{off}^{-}\right)}{\left(Y^{+} - Y_{off}^{+}\right) + \alpha_{y}\left(Y^{-} - Y_{off}^{-}\right)}$$

Jefferson Lab

$$X = \frac{1}{\sqrt{2}} \left(X_{ROT} - Y_{ROT} \right)$$

 $Y = \frac{1}{\sqrt{2}} (X_{ROT} + Y_{ROT})$

Poisson potential map of a single wire used to calculate coefficients for a two-dimensional polynomial correction of BPM data

Spectra Correction

Dipole Measurements

BSY Recombiner Elevation View

Recombiner Beamline

Recombiner Beamline

Summary

- Dual AC dipole magnets were used to measure nonlinear fields
- Sextupole measurements were made to develop a calibration standard
- Measurements of dipole nonlinearity versus position within the dipole were perfromed
- Will be ready to characterize new beamlines as the 12 GeV machine is commissioned

Thanks!

