 "When the Wind blows..."

Colin Carlile, ESS, Lund, Sweden

Neutrons are beautiful! Wave Particle Magneticmoment Neutral

Diffractometers - Measure structures

- Where atoms and molecules are

1-10Ångström

Spectrometers - Measure dynamics - What atoms and molecules do

$$
\mathrm{i}-80 \mathrm{meV}
$$

(3) New Neutrons are beautiful!

Spectrometers - Measure dynamícs - What atoms and molecules do

$$
1-80 \mathrm{meV}
$$

Neutrons are the Swiss Army Knife of Analytic techniques

But neutrons, like diamonds, are still rather rare...
Evolution of the performance of neutron sources

But neutrons, like diamonds, are still rather rare...

utron Scattering, K. Skold and D. L. Price, eds., Academic Press, 19

We have to build the best facilities with the best instruments
if we are to develop, understand, and harness New Materials
"The stone Age didn't end for lack of stone"
Ahmed Zaki Yamani
my phone, $m y$ email, $m y$ notebook, my calculator, $m y$ atlas, $m y$ weather, my camera, my star map, my music, my calendar, my address book...
\& my training routine for Lundaloppet!

Packed with new materials!

Driven by the User Experience

 And, as Henry Ford correctly said "|f \| had asked my customers what they wanted they would have said faster horses"$$
\begin{aligned}
& \text { We must avoid } \\
& \text { the "faster horses" syndrome }
\end{aligned}
$$

Planning Horizon Gap
Researchers
Facility builders

1991

European Spallation Source workshop

Authors: A. D. Taylor ${ }^{\text {a }}$; G. H. Lander
Affiliation: ${ }^{a}$ Rutherford Appleton Laboratory,
Published in: Neutron News, Volume 3, Issue 21992 , page 4
Subjects: Atomic \& Nuclear Physics; Particle \& High Energy Physics

Abstract

A meeting of about 70 experts in condensed-matter science took place in late February at Abingdon, UK, to discuss the scientific opportunities and technological challenges of a new 3rd generation spallation source - the so-called European Spallation Source (ESS).

This Workshop was, in fact, the third in a series: the first, in September 1991 at Simonskall near Jiilich, considered the accelerator options; the second in February 1992, in PSI, Villigen, Switzerland, considered the problems of providing targets and monochromators. The meeting opened with talks from S. Martin (Jiilich), G. Bauer (PSI) and J. Carpenter (Argonne) on the accelerator, target, and moderator options, respectively. Although the problems are formidable in all areas, there don ot seem to be any insuperable obstacles for building a system with a 5 MW beam of protons with a short pulse length of $\sim 1 \mu$ delivered onto two (or more) stationary targets surrounded by a variety of moderators. The heat load on the target could approach 4 MWAitre, similar to that found in a high-flux reactor, but Bauer pronounced that "it can be done." The neutron production of such a source would be spectacular, with a peak flux of $\sim 10^{17} \mathrm{n} / \mathrm{sec} / \mathrm{cm}^{2}$ and an average flux close to that of the ILL.

2000

Physica B 276-278 (2000) 38-44

The project "European Spallation Neutron Source (ESS)": status of R\&D programme
R. Wagner*, W. Bräutigam, D. Filges, H. Ullmaier

Forschungszentrum Jülich, D-52425 Jilich, Germany

Abstract

At present the ESS-Project is in its R\&D phase (1997-2001) comprising activities in the areas of accelerator (linac and rings), target station (target, moderators, reflector) and instruments. The work is carried out by 14 laboratories and universities in the European Union and Switzerland and co-ordinated by the ESS R\&D Council. Intense and fruitful typical results of R\&D work on the ESS linac and target will be given. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Neutron sources

1. Introduction

After delivering the ESS Technical Study [1] in November 1996, the project entered the R\&D phase with a planned duration of 5 years.
The following 14 European institutions contributing to the ESS R\&D activities have signed a Memorandum of Understanding (MoU):
Atominstitut der Österreichischen Universitäten (AIU), Austria, Centro de Investigaciones Energetica (CIEMAT), Spain, Commissariat a l'Energie Atomique (CEA), France, Consiglio Nazionale delle Ricerche (CNR), Italy, Forschungszentrum Jülich (FZJ), Ger many, Hahn-Meitner-Institut (HMI), Germany, Institut für Angewandte Physik der Universität Frankfurt (IAPUF), Germany, Interfaculty Reactor Institute (IRI), (EPSRC) United Kinglom, Ititut Nazionale per Fisica della Materia (INFM) Italy, Naturvetenskapliga forskningsradet (NFR), Sweden, Paul-Scherrer-Institut (PSI), Switzerland, Risø National Laboratory (RISØ), Denmark, Rutherford Appleton Laboratorys (RAL) United Kingdom.

*Corresponding author.

E-mail address: ri.wagner@iz-juclich.de (R. Wagner)

The R\&D work concentrates on problems which have been identified in the technical study as topics where additional results are needed for the engineering design of a pulsed 5 MW neutron source with optimum performance, efficiency, availability and cost/benefit ratio.
The accelerator development covers high-intensity ion sources, funnel design, RFQ's, superconducting cavities for the high-energy part of the linac, beam dynamics, cost estimates.
The research in the target area includes materials development, fluid dynamics and structure mechanics, design optimization and engineering, advanced cold moderator research, new moderator concepts and radiation physics due to experimental verification of particle transport simulation and neutronic optimization of the targe-moderator-refcctor layout. Most or witse topics tional partners which are listed in Table 1 .
For the user instruments of ESS, new concepts will be developed and studied including e.g. thermal neutron detection systems, single crystal diffractometers, solidstate detectors and large crystal monochromators. These topics have been treated in several contributions to this conference. We therefore restrict the following sections to the areas of accelerator and target technology where we illustrate the status of the ESS R\&D programme by presenting some typical results.

0921-4526/00/\$-see front matter © 2000 Elsevier Science B.V. All rights reserved PII: S0921-4526(99)01271-5

ESSwas a grass roots project in Scandinavia
"After a nice lunch in the pleasant surroundings at the first floor of Gamla Biskopshuset the discussion session started. Robert McGreevy expressed that as of today Kjeller seemed to have the longest perspective for neutron scattering in the Nordic countries. NFL at Studsvik is shaky and DR3 is shut down permanently. If we should do something we should do it now. We have nothing to lose, except maybe credibility. Kim Lefmann agreed, "Even if we do not succeed in getting ESS-Scandinavia we will have formed a body working towards ESS and that is already something". Martin Vigild felt that "that we have a window of opportunity on a Danish and Swedishleg, maybe in the end we could add more legs". Lars Börjesson remarked that "it was a golden opportunity with a slim chance" and Börje Johansson thought, "it might be possible to get funding".......... After the discussion it was unanimously agreed to go ahead and the ESS Scandinavia was officially inaugurated. A set of preliminary statutes was distributed to the participants and thoroughly discussed. Several amendments were proposed and agreed upon. The amended version of the Statutes is enclosed. It was decided that ESS.Scandinavia is a Nordic initiative although the name is ESS Scandinavia. The argument for this is that we want ESS placed in the Öresund region, preferentially Skane and Scandinavia is the classic Latin name for Skåne. The ESS-Scandinavia Inauguration meeting had participants from Sweden, Denmark and Norway who will atl work for SS. Scandinavia." from the outset: October $3^{\text {rd }} 2000$

IPAC 2011, San Sebastian, $8^{\text {th }}$ September 2011
CJCarlile

IPAC 2011, San Sebastian, $8^{\text {th }}$ September 2011 CJCarlile

Two dineers, the Czech government \& a minormirade.

```
May 28 'th 2009 Brussels
        Lund?
        Bilbao?
    Debrecen?
```


\Rightarrow What happened in 2009?

Two dinners, the Czech government \& a minor miracle ..

We have got the Partners

Sweden, Denmark and Norway 50% of construction costs - $1479 \mathrm{M} \in$

Spain, France, Germany, |taly, Switzerland, Hungary, Czech Republic, Poland, Netherlands, Estonia, Latvia, Lithuania, Iceland sid |X the remaining 50\%

We have got the Partners

Sweden, Denmark and Norway 50% of construction costs - 1479

17 Partners today
(esi) , momem What can you get for $1.5 \mathrm{~B} \in$ today?

You could buy four A380 airbuses...

or, 28% of the Fehmarn Bridge

or, you could pay the bonuses of US bankers for...

$$
24 \text { days }
$$

(3) The ESS Design Ulpdate Phase 2010-2012

Linear Acceleratorlayout

Length (m)	Input Energy (MeV)	Frequency (MHz)	Geometric β	\# of Sections	Temp (K)	
RFQ	4.7	75×10^{-3}	352.2	--	1	≈ 300
DTL	19	3	352.2	--	3	≈ 300
Spoke	58	50	352.2	0.57	$14(2 \mathrm{c})$	≈ 2
Low Beta	108	188	704.4	0.70	$16(4 \mathrm{c})$	≈ 2
High Beta	196	606	704.4	0.90	$15(8 \mathrm{c})$	≈ 2
HEBT	100	2500	--	--	--	--

H. Danared, M. Eshraqi, A. Ponton, ESS

The Sustainable Research Centre

 ESS-ADifferent Kind of Neutron Source> Responsible - Recyclable - Renewable

> To be carbon dioxide neutral, over the lifetime of the facility, including transport to and from the site.

Innovative Energy Policy

Rødsand-I Windmill Farm
Renewable

Innovative Energy Policy

Rødsand-I Windmill Farm

Renewable

District heating system
Cooling plant
ESS cooling system

Innovative Energy Policy

ESSEnergy Management Strategy

ESSS Energy Management Strategy

Aim to reduce operations costs by $\sim 9 M \in$ p.a.

IPAC 2011, San Sebastian, $8^{\text {th }}$ September 2011
CJCartile

Let's get "back to our beetroot" - the environment
If it takes 10 people, 2 hours to plant i tree,

How long does it take 500 people to build the ESS?

This is how it is usually done

Today's most powerful spallation source

ESSEnergy concept 2011

The world's first sustainable large-scale research facility?

ESS's Cooling water becomes someone else's Heating water

ESS will provide 20% of Lund's Heating needs

- Electricity consumption is reduced from 350 GWh to 250 GWh, partly because of smart cooling systems and building technology.
- Carbon dioxide savings of 165,000 tonnes per year, compared with a conventional energy solution.
- Operational costs for ESS reduced by up to $15 \mathrm{M} € /$ year.
- 10,000 houses in the Swedish towns Lund, Lomma and Eslöv can be heated by district heating.

- International role model - we hope.
- Factor out the effect of electricity cost fluctuations
- Electricity consumption is reduced from 350 GWh to 250 GWh, partly because of smart cooling systems and building technology.

:ar,
$3 \in /$ year.

1a and Eslöv

15

IPAC2011, San Sebastian, $8^{\text {th }}$ September2011 CJCarlile

We are seeking more staff

The World's Ultimate Slow Neutron Source?

$$
900 \times \text { SNS } 830 \times \text { ES }
$$

But not until 2050 .when they've found the l figs boson. It must be somewhere

Thanks for listening!

Thanks for a great week!

IP AC 2011, San Sebastian, $8^{\text {th }}$ September 2011
CJCarlile

Thanks forlisteni Thanks for a great

11.30 tomorrow

