The First Years

Experience of
 LHC Beam Instrumentation

IPAC 2011
September $4^{\text {th }}-9^{\text {th }} 2011$
San Sebastián, Spain.

Rhodri Jones
(CERN Beam Instrumentation Group)

Outline

The use of Beam Instrumentation in Commissioning and Understanding the LHC

- Early Diagnostics
- Safe Operation
- Machine Protection
- Optimisation of Operation
- Beam Based Feedbacks
- Synchrotron Light Diagnostics
- Helping the Experiments
- Luminosity calibration
- Future Developments

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
- Injection - visible on scintillator screens
- Trajectory - using BPMs one beam at a time, one hour per beam
- Closed orbit - BPMs updating at 1 Hz
- Dump lines - visible on BPMs and large scintillator screen

First Beam in the LHC 8/8/2008

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
- Injection - visible on scintillator screens
- Trajectory - using BPMs one beam at a time, one hour per beam
- Closed orbit - BPMs updating at 1 Hz
- Dump lines - visible on BPMs and large scintillator screen
BPM availability ~ 99\%

$2^{\text {nd }}$ International Particle Accelerator Conference $-4^{\text {th }}$ to $9^{\text {th }}$ September - San Sebastián, Spain

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
- Injection - visible on scintillator screens
- Trajectory - using BPMs one beam at a time, one hour per beam
- Closed orbit - BPMs updating at 1 Hz
- Dump lines - visible on BPMs and large scintillator screen
BPM availability ~ 99\%

YASP DV LHCRING / INJ-TEST-NB / beam 2

Monitor V

Early Diagnostics

- Threading the first pilot bunch round the LHC ring
- Injection - visible on scintillator screens
- Trajectory - using BPMs one beam at a time, one hour per beam
- Closed orbit - BPMs updating at 1 Hz
- Dump lines - visible on BPMs and large scintillator screen

Uncaptured beam sweeps through the dump line

Safe Operation - Machine Protection

- Role of the BLM system:
- Protect the LHC from damage
- Dump the beam to avoid magnet quenches
- Diagnostic tool to improve the performance
- Design criteria
- Signal speed and reliability
- Dynamic range > 10^{9}
- Electronics $\Rightarrow 10^{7}$
- Choice of detector $\Rightarrow 10^{4}$
- Detectors
- ~3600 Ionisation Chambers (IC)
- $50 \mathrm{~cm}, 1.5 \mathrm{I} \mathrm{N}_{2}$ gas filled at 1.1 bar

- Ion collection time $85 \mu \mathrm{~s}$
- ~300 Secondary Emission Monitors (SEM)
- 10 cm , pressure $<10^{-7}$ bar
- ~ 30000 times smaller gain than IC
- Electronics
- Current to Frequency conversion
- Losses integrated \& compared to threshold table
- 12 time intervals (1 turn to 100s) and 32 energy ranges

Rhodri Jones (CERN)

BLMs \& Collimation

- Full collimation setup

- BLM system used both for setting-up and qualifying
- Beam cleaning efficiencies $\geq 99.98 \% \sim$ as designed

Observing Fast Losses

- $7^{\text {th }}$ July 2010 - BLMs request beam dump as result of fast (ms) beam loss
- Since then 35 beam dumps requested due to similar losses
- Believed to be caused by "Unidentified Falling Objects" or UFOs
- Subsequent study showed more than 5000 candidates - most well below threshold
- UFO rate during physics fills is now ~ 5 per hour

$2^{\text {nd }}$ International Particle Accelerator Conference $-4^{\text {th }}$ to $9^{\text {th }}$ September - San Sebastián, Spain
Rhodri Jones (CERN)

BLM Thresholds

Thresholds Compared to Noise Levels

- Are the thresholds safely above the noise levels?
- YES up to 5 TeV
- Noise proportional to cable length
- May require RadHard ASIC CFC for full performance at 7 TeV
- Would allow mounting front-end electronics near BLM

Maximum Noise and Thresholds ($40 \mu \mathrm{~s}$)

Cable length analysis: 20100207

Machine Optimisation - Feedbacks

- Opted for central global feedback system regrouping:
- Orbit, energy, tune (operational)
- Chromaticity, coupling (tested)
- Initial requirements:
- Chromaticity expected to be most critical parameter for real-time control
- Large perturbations foreseen \& tight tolerances required
- BUT

- Large losses during early ramps changed focus to tune followed by orbit feedback
- Orbit-Feedback is the largest and most complex LHC feedback:
- 1088 BPMs $\rightarrow 2176+$ readings @ 25 Hz from 68 front-ends
- 530 correction dipole magnets/plane, distributed over ~ 50 front-ends
- Total >3500 devices involved
- more than half the LHC is controlled by beam based feedbacks!

Orbit Feedback in the LHC

- Bandwidth of 0.1 Hz with BPM data supplied at 25 Hz
- Regularised SVD approach to calculate applied correction
- Can maintain orbit stability to better than $\sim 70 \mu \mathrm{~m}$ globally $\& \sim 20 \mu \mathrm{~m}$ in the arcs

Orbit Feedback in the LHC

- Earth Tides dominating Orbit Stability during Physics

$2^{\text {nd }}$ International Particle Accelerator Conference $-4^{\text {th }}$ to $9^{\text {th }}$ September - San Sebastián, Spain

Orbit Stability Limitations

- Main performance limitation of orbit feedback
- Systematic BPM reading dependence on temperature
- Initially caused drifts up to $300 \mu \mathrm{~m}$ on long-term orbit
- Suppressed to the order of $100 \mu \mathrm{~m}$ by
- Calibration before each fill
- Temperature compensation of each individual BPM channel
- Long term solution - place electronics in temperature controlled racks

The LHC Tune System

- Base Band Tune (BBQ) Measurement System
- Direct diode detection, heavy filtering \& baseband acquisition using audio ADCs
- Shows extremely high sensitivity
- Most measurements possible with residual beam oscillations
- No need for PLL system with tune determination using FFT peak fitting

Tune Feedback in the LHC

Hor. spectrum with Tune-FB OFF

Hor spectrum with Tune-FB ON

- With full pre-cycling the fill-to-fill stability is now typically $2-3 \times 10^{-3}$
- Variations frequently increase up to 0.02
- Due to partial or different magnet pre-cycles after e.g. access or sector trips
- Tune-FB routinely used for physics ramps to compensate these effects - Using peak fit on FFT with 0.1..0.3 Hz Bandwidth

Tune Feedback \& Active Damping

- BBQ noise-floor raised by 30 dB
- wide tune peak \rightarrow reduces tune resolution from $10^{-4} \rightarrow \sim 10^{-2}$
- Impacts reliable tune (and coupling) measurement \& feedback
- Incompatible with chromaticity measurements using small $\Delta p / p$-modulation
- Only solution found so far is to run damper with lower gain

Optimisation of Operation

- Synchrotron Light Diagnostics
- Energy high enough to obtain sufficient visible light for protons \& ions
- SC undulator used below 1.2TeV until radiation from D3 dipole takes over

Optimisation of Operation

- Monitoring of the $3 \mu \mathrm{~s}$ abort gap
- Every 100 ms detect if gap population over 10% of quench level
- 10^{5} protons in100ns at 7 TeV but plenty of photons
- Most challenging at 1.2 TeV with low light levels (5×10^{7} prot / 100ns)
- Uses gated Multi Channel Plate / Photomultiplier
- Gated photomultiplier gets $\sim 15 \%$ of collected synchrotron light
- Photomultiplier gated off except during the 3μ s abort gap
- Integration using LHCb integrator ASIC
- Gap observed in 30 bins with 100ns resolution

- Single pilot debunching when the RF is switched OFF

Transverse Profile Measurement

- CCD camera fitted with gated intensifier
- Used from very early stage to investigate emittance growth
- Understanding of the optics \& error sources ongoing for absolute calibration

Bunch by Bunch Transverse Profiles

- In 2011 implemented gated mode
- Allows profile of single bunch to be captured in a few seconds
- Operational uses
- Identify instabilities leading to emittance growth
- Verify correct injection parameters from injectors
- Limitations
- Time required to scan over all bunches
- 10 times faster readout being investigated
- Intensified fast camera under test

804 bunches - with strong electron cloud activity

Bunch by Bunch Transverse Profiles

- In 2011 implemented gated mode
- Allows profile of single bunch to be captured in a few seconds
- Operational uses
- Identify instabilities leading to emittance growth
- Verify correct injection parameters from injectors
- Limitations
- Time required to scan over all bunches
- 10 times faster readout being investigated
- Intensified fast camera under test

804 bunches - with strong electron cloud activity

after some time of vacuum chamber scrubbing

Longitudinal Density Monitor (LDM)

- Aims:
- Profile of the whole LHC ring with 50ps resolution
- High dynamic range for ghost charge measurement
- Method:
- Single photon counting with Synchrotron light
- Avalanche photodiode detector
- 50ps resolution TDC

Longitudinal Bunch Shape

synchrotron
light

LDM On-line Correction

LHC Optimisation with the LDM

- Achievements:
- Dynamic range of up to 10^{5} with integration time of a few minutes
- Used for:
- Injector optimisation
- Detection of large satellite populations
- Led to injection cleaning using transverse damper
- Avoids triggering beam dump due to satellites kicker out by injection kicker
- Optimisation of LHC RF
- Ghost bunches observed during LHC ion run in 2010
- Came from RF manipulations to improve capture efficiency of main bunches

Lead ions at 3.5 Z TeV 10 min integration

Helping the Experiments

- LHC Experiments use precise cross-section measurements to constrain pp interaction models \& detect or quantify new phenomena due to physics beyond the Standard Model
- Required accuracy on absolute value of cross section is $1-5 \%$
- Two methods used in LHC
- "van der Meer scan"
- "beam-gas imaging"
- Both methods require a measurement of the individual populations of the bunches contributing to the luminosity
- Providing bunch by bunch intensity for absolute luminosity calibration is the job of the LHC Beam Current Transformers
- Their errors was a major contribution to the final precision in 2010
- estimated 3\% absolute accuracy of bunch population measurement
- Triggered fruitful collaboration between BI Group \& LHC Experiments
- Pushed LHC Beam Current Transformer performance to its limits
- Well beyond requirements for normal operation

BCT Error Sources \& their Mitigation

- Bunch pattern dependence \& saturation of the DCCT
- Modified DCCT feedback loop, wall-current bypass \& front-end amplifiers
- Uncertainty in the absolute DCCT calibration now at the 0.1% level
- Satellite bunches and unbunched beam
- Produces uncertainty in cross-calibration of FBCT with DCCT
- LDM \& data from experiments used to ensure this is well below 1%

BCT Error Sources \& their Mitigation

- Bunch length dependence of the fast BCT
- Mitigated with 70MHz LP filters - still allows bunch-by-bunch measurement
- Bunch position dependence of the fast BCTs
- At 1% per mm this effect was not at all expected
- Found to come from commercial toroid used - new monitor under development
- Fortunately orbit is kept sufficiently stable \& limits effect to well below 1%

Helping the Experiments - Outlook

- 2011
- Important progress made in understanding many error sources
- Should bring bunch population uncertainties in line with other experimental sources for absolute luminosity determination

Beam 1 (11.4.2011)
1.2 E11 protons/bunch; 50 ns bunch spacing; total 1020 bunches/beam ($12 \mathrm{~b}+14 \times 72 \mathrm{~b}$)

The Future

- Improvements to the LHC Collimators
- LHC equipped with over 100 collimators
- Beam-based setup time is non-negligible using current BLM method
- Tighter tolerances will be required for future LHC operation
- Next generation collimators will contain embedded BPM
- Should drastically reduce set-up time
- Will allow constant monitoring of beam v jaw position
- Design \& test of components underway
- New acquisition electronics being developed
- Based on compensated diode detection giving sub-micron resolution

Summary

- The LHC is a complex collider with a tremendously high beam power \& can only be operated ...
- efficiently with excellent diagnostics
- safely with a high performance and failsafe beam loss system
- Bunch-by-bunch diagnostics required from most instrument s
- Proven essential for tracking down instabilities \& optimising operation
- Many critical measurements (Q,Q'...) must be performed without significant emittance degradation
- Possible through sensitive BBQ system \& self-excitation of the beam
- Challenges ahead
- Continued optimisation and understanding of installed instruments
- Temperature stabilised BPM electronics, new FBCT toroids, tune \& damper ...
- Development of new instruments \& techniques
- Collimator BPMs, fast diamond detector BLMs, fast imaging systems,....

