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Abstract

In the present work we study the dynamics of laser
pulses propagating in a cold relativistic plasma, which
can be of interest for particle acceleration schemes. After
obtaining a Lagrangian density from the one-dimensional
equations for the laser pulse envelope and the wakefield, we
define a trial function and apply the variational approach
in order to obtain an analytical model which allows us to
calculate an effective potential for the pulse width. Using
this procedure, we analyze the stability of narrow and large
laser pulses and then compare its results with numerical so-
lutions for the envelope and density equations.

INTRODUCTION

Intense electromagnetic pulses displace plasma elec-
trons and create a resulting ambipolar space-charge field
with the associated density fluctuations, here known as the
wakefield, which can be used as an accelerating structure
[1, 2, 3, 5, 7, 8, 9, 11]. Investigation of the laser pulse and
wakefield coupled dynamics has been done in the literature
but, since focus has been mostly directed to fast pulses, fre-
quently phase and group velocity are approximated by the
speed of light c [6] and pulse distortions are sometimes ne-
glected or treated under stationary wave assumptions [12].

As these approximations can be restrictive if one desires
to follow the time dependent dynamics of laser pulses along
the direction of modulation, we want to examine how the
system behaves when they are relaxed. We shall investigate
to what extent can a pulse retain its initial shape following
its interaction with the wakefield. For a given pulse power,
the dynamics is largely dictated by the pulse width [14].
One of the findings here is that while wider pulses with
widths larger than c/ωp may keep their shapes even in the
presence of space-charge fields, narrow pulses with widths
comparable to c/ωp always tend to spread as time evolves.

THE MODEL

Following previous works [3, 4, 6], we consider our sys-
tem as consisting of a mobile cold electronic fluid and
a neutralizing fixed ionic background. All fields prop-
agate along the x axis of our coordinate system. The
laser field is described by the vector potential A =
ẑ a(x, t)ei(k0x−ω0t) + c.c., where a is the slowly varying
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complex amplitude of the field, with k0 and ω0 respectively
as the wavevector and frequency of the high-frequency car-
rier. From the wave equation for the vector potential and
the equations of motion for the electron, one can write the
following equations (valid for |ea/mc2| � 1)

2i
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where we have migrated to the dimensionless quantities
ωpx/c → x, ωpt → t, ea/mc2 → a, and (n − n0)/n0 →
n. Here n0 is the equilibrium density and ωp ≡ 4πn0e

2/m
is the plasma frequency. We note that k0 and ω0 are nor-
malized likewise. We now introduce the wave frame coor-
dinates τ = t and ξ = x − vgt, where vg = k0/ω0 is the
group velocity of the radiation. Defining a new wakefield
potential function ϕ ≡ v2

gn−|a|2/2 and κ ≡ v2
g −1, if one

moves to the new coordinates and realizes that due to the
slow modulations ∂/∂τ � vg∂/∂ξ, eqs. (1) and (2) can
be written as [14]
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We note that, if we had chosen vg = c, the coefficient κ
would be zero and we would neglect terms in eq. (3) that,
as we shall see, are substantial to determine the longitudinal
dynamics of the interaction. From eq. (4) we have:

ϕ(ξ) =
1

2vg

∫ ∞

ξ

sin
(

ξ − ξ′

vg

)
|a(ξ′)|2dξ′. (5)

Eqs. (3) and (4) incarnates our basic model and expres-
sion (5) shall be used in in the coming simulations but let
us focus presently on two limits which can be examined.

Wide Pulses

The first case is the one where the width Δ of the laser
pulse is much larger than the plasma wavelength c/ωp or, in
our dimensionless variables, Δ � 1. Under this condition
|a|2 varies slowly and, if one approximates ∂|a|2/∂ξ → 0,
the wide pulse dynamics can be described by a Nonlinear
Schrödinger Equation (NLS) of the form

−2iω0
∂a

∂τ
+ κ

∂2a

∂ξ2
− |a|2a

2
= 0. (6)
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Modeling the pulse as a Gaussian with time dependent am-
plitude and width, Lagrangian average methods [6, 10, 13]
quickly reveal that under the present circumstances a stable
pulse solution to eq. (6) does exist, which can be found as
the minimum of the effective potential

Uwide
eff =

κ

2π2ω2
0Δ

(
4κ

Δ
+ W

)
, (7)

W =
∫ |a|2dx measuring the photon number within the

pulse. Uwide
eff has one minimum, and its general form is il-

lustrated in fig. 1, panel (a). One can write the equilibrium
width Δw at the potential minimum and the oscillatory fre-
quency Ω of slightly perturbed pulses around it as:

Δw = 8|κ|/W , Ω = W 2/(32|κ|πω0). (8)

If Δw � 1 the stable solution is located in the wide
pulse region and the wide pulse approximation should be
expected to remain valid for all times if the initial condi-
tion lies sufficiently close to the stable solution and satisfies
Δ̇ = 0. When Δw � 1, even if one starts with an initially
wide pulse Δ(0) > 1 the off-equilibrium pulse will drift
towards the equilibrium Δw. However, since Δw is now
out of the wide pulse regime , we shall resort to numerical
simulations to investigate the dynamics there.

Narrow Pulses

Narrow pulses act like delta functions. Therefore ϕ ≈ 0
inside the pulse, although it can be large behind where
it reads ϕ(ξ, τ) ≈ (1/2vg)W sin [(ξ − ξ0(τ))/vg ] with
ξ0(τ) as the pulse position. In this regime, the full expres-
sion (3) can be approximated by the following NLS

−2iω0
∂A

∂τ
+ κ
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∂2A
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− |A|2A

2v2
g

)
= 0. (9)

Lagrangian average method now reveals that regardless of
the pulse power no static solution is to be found, with any
pulse-like initial condition always spreading out as time
evolves. The effective potential in this case reads

Unarrow
eff =

κ2

2π2v2
gω2

0Δ

(
4v2

g

Δ
+ W

)
. (10)

As Unarrow
eff has no local minimum along the positive Δ

axis, the width grows until it reaches the transition region
Δ ∼ 1 where the approximation again fails and numerical
work is required. Uwide

eff is represented in fig. 1, panel (b).

FULL SYSTEM VS. ESTIMATES

With the previous estimates at our disposal, we now pro-
ceed to investigate the full system defined by eqs. (3) and
(4) or (5) using shaded contour plots for the laser intensity
|a(ξ, τ)|2, with brighter shades corresponding to higher
amplitudes. In fig. 2 we display the case where a fixed
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Figure 1: (a) Uwide
eff and (b) Unarrow

eff for v2
g = 0.99 and

W = 0.01.

point can be found in the wide pulse region. Panel (a) de-
picts the approximation obtained from the NLS eq. (6), and
in panel (b) we plot the full solution to the set (3), (5). We
take W = 0.01 with v2

g = 0.99, for which κ = 0.01 and
Δw = 8. We launch a pulse with the shape of a hyperbolic
secant of width Δ(0) = 10 and initial momentum (associ-
ated with its expansion or contraction) null.
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Figure 2: Countour plots of |a(ξ, τ)|2 for W = 0.01, v2
g =

0.99 and Δ(0) = 10 (wide condition).

Fig. 3 is plotted for the same parameters, but now start-
ing from a narrow width Δ(0) = 0.25. Comparison of the
dynamics generated by the approximated NLS (9) as shown
in panel (a), and by the full system (3) and (5) in panel
(b), reveals that for short times the pulse starts opening up,
as predicted by the narrow pulse approximation. For later
times panel (c) shows that the pulse crosses the transition
region Δ ∼ 1 mostly unhindered, and keeps opening up as
it reaches and moves further into the wide region.

We next investigate the case where W = 0.1, keeping
v2

g = 0.99. Now Δw ∼ 0.8 < 1, which means that no sta-
ble solution exists in the wide region either. Pulses starting
from wide configurations initially have their width reduced
as commented earlier but, when Δ ∼ 1, they are strongly
affected by the wakefield as demonstrated in fig. 4. Panels
(a) and (b) once again respectively refer to the NLS (6) and
the full system for short times, while panel (c) depicts the
full system for long enough times that allow the pulse to
reach the transition region. In this case, the initial effective
potential is not large enough to provide sufficient “momen-
tum” with which the pulse could clear the transition region,
and pulse distortion is thus appreciable.
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Figure 3: Contour plots of |a(ξ, τ)|2 for W = 0.01, v2
g =

0.99 and Δ(0) = 0.25 (narrow condition).
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Figure 4: Contour plots of |a(ξ, τ)|2 for W = 0.1, v2
g =

0.99 and Δ(0) = 10 (wide condition).

Narrow pulses however have the same sort of behavior
observed for W = 0.01. Fig. 5 depicts the space-time
history of a pulse starting from Δ(0) = 0.25: panels (a)
and (b) representing the NLS narrow approx. eq. (9) and
the full system respectively show that, for short times, both
dynamics coincide; panel (c) shows the pulse crossing the
transition Δ ∼ 1. At later times the distortion is more
prominent, as compared with that of fig. 3, because of the
higher intensity wakefields generated here.

CONCLUSIONS

This work was devoted to the study of the coupled dy-
namics of laser pulses and wakefields in laser-plasma sys-
tems. Average Lagrangian methods have been employed
to create estimates used to guide the investigation. Sta-
ble laser pulses were found in low power regimes where
pulse width is much larger than the plasma wavelength,
Δ � c/ωp. In that case estimates and full simulations
of the coupled system agree to a large extent.

In cases of high power pulses, stable solutions are absent.
While pulses launched from wide initial conditions shrink
until reach the transition region Δ ∼ c/ωp, where they
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Figure 5: Contour plots of |a(ξ, τ)|2 for W = 0.1, v2
g =

0.99 and Δ(0) = 0.25 (narrow condition).

are heavily distorted, pulses with narrow initial conditions
Δ � c/ωp traverse the transition region and keep spread-
ing as they move deeper into the wide regimes. The asym-
metry is credited to the fact that narrower pulses always de-
part from higher effective potentials, enabling them to cross
the transition region due to inertial effects. If Δ ∼ c/ωp,
wakes are strongly excited. When narrow pulses traverse
the transition region, wakes are briefly excited for as long
as the pulse stays in the transition region. When the pulse
comes from the wide pulse side and is allowed to reach the
transition in higher power regimes such that Δw ∼ c/ωp,
it remains partially trapped there. Wakes are excited for
longer stretches of time, albeit in an incoherent form.
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