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Abstract 
Considerable use has been made in recent years of 

accelerator physics modelling and on-line tools under 
MATLAB. This work has demonstrated the benefits of 
operating in a rich integrated environment and given good 
portability across projects and operating systems. As a 
possible alternative to MATLAB, Diamond has been 
evaluating options based on Python. Python together with 
the Numpy libraries and Qt Graphics provides an 
environment which offers a lot of the functionality of 
MATLAB. This paper presents these developments, 
which include a tracking code, a symplectic integrator, 
and code to calculate the Twiss functions and response 
matrix, together with a GUI interface. 

INTRODUCTION 
Diamond, a third generation 3GeV synchrotron light 

source, commenced operation in January 2007 [1]. The 
storage ring is based on a 24-cell double bend achromatic 
lattice of 561m circumference. The photon output is 
optimised for high brightness from undulators and high 
flux from multi-pole wigglers. The current operational 
state includes twenty photon beamlines, with a further 
twelve beamlines in design or construction. 

From initial commissioning, Diamond has used the 
accelerator physics application MATLAB Middle Layer 
(MML) [2] as part of on-line physics studies. Whilst 
MML has been used very successfully at Diamond and at 
a number of other light source projects, it requires 
MATLAB to operate. This brings with it the need for a 
MATLAB licence for each MATLAB environment, or 
the overhead of building and deploying MATLAB 
compiled applications. Historically, up to and including 
version R14, we also experienced poor stability of 
MATLAB on a Linux platform.  

This work explores the practicalities of realising similar 
functionality to MML in an open source, cross platform 
environment based on the scripting language Python [3].  

PYTHON AS AN ALTERNATIVE TO 
MATLAB 

Developing scientific applications in Python has been 
aided by work on a number of support packages. These 
components, when brought together, provide a rich 
development environment. They are:  
 Numpy [4]: A fast, compact, multi-dimensional array 

toolbox. Whilst Python has heterogeneous Lists of 
objects, Numpy extends these to homogeneous 
Arrays and Matrices which support element-wise and 

linear algebra mathematical operations. 
 Matplotlib [5]: A plotting library for Python and 

Numpy which provides an object-oriented API 
allowing plots to be embedded into applications, and 
also provides a procedural interface based on a state 
machine designed to resemble closely that of 
MATLAB plotting. 

 PyQt [6]: A Python binding for the Qt cross platform 
GUI environment. 

Within Diamond, Python together with one or more of 
the above components has been used for the development 
of a number of self-contained control system applications 
[7]. These components were also used in the development 
of the particle tracking code Serpentine [8] and as the 
basis of Spyder [9], a Python development environment 
providing MATLAB-like features. 

REQUIREMENTS  
The requirements for the application are:  
 MML-like functionality: Built-in physics 

applications, scripting, and a command line interface 
to work with data interactively.  

 Object-orientated design: Application design should 
be object-orientated, but should retain the ability to 
operate with data and to have common objects and 
data between in-built applications, scripts and the 
command line interface.  

 Control System interface: A control system interface 
that abstracts on-line data from the underlying 
control system, and is independent of any specific 
control system toolkit.  

 On-line model: Connection to an on-line model. 
 Ease of deployment: Minimal dependencies and 

support for cross-platform deployment (Linux and 
Windows).  

 Based on Python: Utilising Python and the related 
components identified above.  

 Built-in plotting: Support for common visualization 
of the data, together with flexibility in user-generated 
plots. 

 Ease of physics application development: provided 
by the use of clean interfaces between components.  

THE MAPP APPLICATION  
The application, called MAPP, consists of a user 

interface, together with interfaces to multiple data sources 
including the control system and a model server.  

The user interface data flow, Fig. 1, is based on two 
objects, the Name Object and Get Put Object. The former 
defines the information for each family of devices 
including the number of members, conversions to and 
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differentiation (used in MADX-PTC and Tracy-3). In the 
case of automatic differentiation the recovered matrices 
are identical to the analytic solutions, to within numerical 
precision. The subset used in the model server is pure 
Python and Numpy, and uses the 4-D matrix solutions of 
the expanded paraxial Hamiltonian (see Eq. 1) [14] 
(transverse co-ordinates in scaled momentum, 
longitudinal co-ordinates in relative momentum 
deviation), and the linear part of the SLAC-75 [15] dipole 
fringe field, taking into account field integral and pole 
gap. This is adequate for linear optics in an easy-to-
understand code as a proof of concept. If required, non-
linear elements and solvers are available as drop-in 
replacements.  
 = − + 	 +                         (1)  

 
The uncoupled Twiss functions are calculated from the 
one-turn matrix and propagated through each element, 
and the analytic orbit response matrix is then calculated 
from the Twiss functions.  

Lattice Description 
The lattice is read in Tracy-3 format by a recursive 

descent parser, with the Tracy-3 lattice file generated 
from an AT deck, which is the master lattice format at 
Diamond. The AT deck is not read directly, as it is stored 
in the MATLAB language and so would require a 
complete MATLAB parser. The simplified domain-
specific lattice languages, such as MAD (of which Tracy-
3 is a variant), are therefore more suitable for interchange. 

Model Server 
The model server is a Python XMLRPC [16] server 

running as a web service on port 8080. XMLRPC 
provides a simple transport mechanism as it supports the 
common cross-language types of integer, string, floating 
point, heterogeneous list (called array) and dictionary 
(structure) and provides clients and servers in many 
languages. Whilst the serialization of messages can be up 
to 20 times larger than their native storage, this is not a 
significant limitation, and for large data sets this can be 
improved by using the base 64 to encode large arrays as 
binary blobs, making the overhead only 30%. An 
application of this would be to support the return of turn-
by-turn tracking data from all BPMs. 

On start-up the model server reads a lattice file from 
disk and calculates positions, initial Twiss functions and 
the response matrix. It then accepts magnet set-point 
changes and returns closed orbits, as measured by the 
BPMs, Twiss functions at all lattice points, and tunes. 
Subsequent changes are processed using a command to 
run the simulator.  

STATUS  
To date the application, model server and interface to 

the Diamond control system are working. The built-in 

applications support plotting of data for the families and 
some elementary physics functionality, orbit correction, 
and beta function measurement. The command line 
interface and scripting is working, but the management of 
global name space needs improving, and all the 
configuration of interface parameters is hard-coded for 
the Diamond storage ring. At present all the application 
components run in the Qt application thread, so any errant 
script or command can lock the application up. The Qt 
user interface needs developing to include resizing, menu 
functions, etc.  

CONCLUSION 
The work to date has validated the initial assumptions 

that Python together with the support packages make a 
rich environment suitable for developing accelerator 
physics tools. However, Diamond’s needs have meant 
that this work has had low priority and so the application 
as yet is no more than a proof of principle. Considerable 
work would be required to develop a usable tool.  

Furthermore the value of this environment needs to be 
considered, in the context of the acceptability of a 
Python-based application in comparison to a MATLAB-
based one for the intended users, operations staff and 
accelerator physicists. 
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