
A PYTHON TRACKING CODE AND GUI FOR CONTROL ROOM
OPERATIONS

M. T. Heron#, J. Rowland, Diamond Light Source Ltd, Oxfordshire, U.K.

Abstract
Considerable use has been made in recent years of

accelerator physics modelling and on-line tools under
MATLAB. This work has demonstrated the benefits of
operating in a rich integrated environment and given good
portability across projects and operating systems. As a
possible alternative to MATLAB, Diamond has been
evaluating options based on Python. Python together with
the Numpy libraries and Qt Graphics provides an
environment which offers a lot of the functionality of
MATLAB. This paper presents these developments,
which include a tracking code, a symplectic integrator,
and code to calculate the Twiss functions and response
matrix, together with a GUI interface.

INTRODUCTION
Diamond, a third generation 3GeV synchrotron light

source, commenced operation in January 2007 [1]. The
storage ring is based on a 24-cell double bend achromatic
lattice of 561m circumference. The photon output is
optimised for high brightness from undulators and high
flux from multi-pole wigglers. The current operational
state includes twenty photon beamlines, with a further
twelve beamlines in design or construction.

From initial commissioning, Diamond has used the
accelerator physics application MATLAB Middle Layer
(MML) [2] as part of on-line physics studies. Whilst
MML has been used very successfully at Diamond and at
a number of other light source projects, it requires
MATLAB to operate. This brings with it the need for a
MATLAB licence for each MATLAB environment, or
the overhead of building and deploying MATLAB
compiled applications. Historically, up to and including
version R14, we also experienced poor stability of
MATLAB on a Linux platform.

This work explores the practicalities of realising similar
functionality to MML in an open source, cross platform
environment based on the scripting language Python [3].

PYTHON AS AN ALTERNATIVE TO
MATLAB

Developing scientific applications in Python has been
aided by work on a number of support packages. These
components, when brought together, provide a rich
development environment. They are:
 Numpy [4]: A fast, compact, multi-dimensional array

toolbox. Whilst Python has heterogeneous Lists of
objects, Numpy extends these to homogeneous
Arrays and Matrices which support element-wise and

linear algebra mathematical operations.
 Matplotlib [5]: A plotting library for Python and

Numpy which provides an object-oriented API
allowing plots to be embedded into applications, and
also provides a procedural interface based on a state
machine designed to resemble closely that of
MATLAB plotting.

 PyQt [6]: A Python binding for the Qt cross platform
GUI environment.

Within Diamond, Python together with one or more of
the above components has been used for the development
of a number of self-contained control system applications
[7]. These components were also used in the development
of the particle tracking code Serpentine [8] and as the
basis of Spyder [9], a Python development environment
providing MATLAB-like features.

REQUIREMENTS
The requirements for the application are:
 MML-like functionality: Built-in physics

applications, scripting, and a command line interface
to work with data interactively.

 Object-orientated design: Application design should
be object-orientated, but should retain the ability to
operate with data and to have common objects and
data between in-built applications, scripts and the
command line interface.

 Control System interface: A control system interface
that abstracts on-line data from the underlying
control system, and is independent of any specific
control system toolkit.

 On-line model: Connection to an on-line model.
 Ease of deployment: Minimal dependencies and

support for cross-platform deployment (Linux and
Windows).

 Based on Python: Utilising Python and the related
components identified above.

 Built-in plotting: Support for common visualization
of the data, together with flexibility in user-generated
plots.

 Ease of physics application development: provided
by the use of clean interfaces between components.

THE MAPP APPLICATION
The application, called MAPP, consists of a user

interface, together with interfaces to multiple data sources
including the control system and a model server.

The user interface data flow, Fig. 1, is based on two
objects, the Name Object and Get Put Object. The former
defines the information for each family of devices
including the number of members, conversions to and

mark.heron@diamond.ac.uk

WEPC159 Proceedings of IPAC2011, San Sebastián, Spain

2358C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

from engine
mapping to c
For each fam
Name Objec
methods to g
the control sy
normalised to
default data
machine, the
Get and Pu
source or des
or destinatio
are subject to
or physics un

The user
providing pre
position, a g
parameters,
applications,
source and d
Python interp
Matplotlib, b
due to anti
followed by
implemented
gives accepta

The contr
Cothread [7]
interface to t
put paramete
name, cell an
provides the
in one operat

Initialisatio
all specified
Objects, e.g.
Numpy Arra
Get Put Obj
on running a
on command
through thes
inheriting co
defining the
plotting meth
command wi
in the Qt th

eering units,
control system
mily this obj
ct class. The

get data from a
ystem and file
o unity or as

source and
e model serve
ut methods a
stination can b

on-specific me
o specified co
nits.

Figure

interface, F
e-defined plot

group of label
a group of
 two sets of
destination, an
preter. The pl
but this proved
i-aliased softw
y image tran
d using the Py
able real-time
rol system in
] interface to
the model serv
ers to or from
nd instance. F
option to get

tion.
on creates Na
families of de
 HBPMGetPu

ays e.g. HBPM
ect. All action
a script, on ru
ds entered in
se objects and
onfiguration fr

plot data siz
hods which o
indow include
hread, which

units, spatial
m parameters,
ject is an ext
e Get Put O
and put data to
es, or to get da
zeros. For the
destination a

er, files etc –
are directed.
be specified b
ethod, e.g. G

onversion to or

1: Data flow.

Fig 2, is a
tting of data a
ls and text bo

buttons for
radio buttons
nd a comman
lotting was or
d too slow for
ware renderi
nsfer (blittin
ython QWT [
performance.

nterface is r
o EPICS Cha
ver provides m
m the model
For performan
t and put all v

ame Objects,
evices, and th
ut from each

M, for the data
ns are then e

unning an in-b
the command

d data. A plo
rom Get Put O
ze, the range,
operate on Ar
es a Python in
provides acc

l information,
, e.g. Quad fa
tension of a

Object defines
o the model se
ata randomise
e Get Put Obj
are defined –
to or from w
Alternatively

by calling a so
etModel. All
r from engine

Qt 4 applic
against longitu
oxes for displa

invoking in
 for selecting
nd window w
riginally realis
r real-time up
ing into a b
ng), and was
[10] module w
.
realised using
annel Access.
methods to ge
l server by fa
nce reasons it
values for a fa

e.g. HBPMN
hen creates Ge
Name Object
a values from

event-driven, b
built applicati
d window, an
t object is cr
Object and the

the units, etc
rrays of data
nterpreter, run
cess to the g

, and
amily.

Base
s the
erver,
d and
ject a
– the
which
y, the
ource-

calls
eering

cation
udinal
aying

n-built
g data
with a
sed in
pdates
buffer
s re-
which

g the
. The
et and
amily
t also
amily

No for
et Put
t, and

m each
based
on or

nd act
reated
ereby
c. for
. The
nning
global

varia
comp

Exa
An

verti
them
BPM
the l
comm

de

Fi

Th
to th
was
proto
and m

Th

MAD
num
ordin
field

Th
for t
6-D
finite

able space o
pletion, includ

F

ample Applic
n example fun
ical beam pos

m is shown in
M values to th
latest values a
mand window

ef plotBPM

 HBPM =
 VBPM =
 p = Plo
 GVB
 p.plotH
 GHBPM[:
 GVBPM[:

igure 3: Script

T
he Python trac
he MATLAB a

originally
otyping tool a
magnet model
An exact Ha
small machin
Explicit and
for separable
2nd order sym
A Newton me
Automatic di

he code has b
DX-PTC [13]

merical precisi
nate systems,

d models are c
he Python tra
the 4-D linear

elements. Tr
e difference m

of the applic
ding the appli

Figure 2: User

cations
nction to get
sitions from t
Fig. 3. The ex

he global Arra
available to an
w or a script.

M():

GHBPMGetP
GVBPMGetP
otting(GHB
BPMGetPut,
HandV(HBPM
:] = HBPM
:] = VBPM

t to plot horizo

TRACKING
cking code in
and C tracking
developed

and so suppor
ls in Python a
amiltonian fo

nes
implicit 4th or
or non-separa

mplectic dipole
ethod closed o
ifferentiation f
een tested aga
] and gives i
ion, provided
 magnet bod
hosen.

acking code c
r case and sym
ransport matr
method (as us

cation and p
cation-specifi

r Interface.

the current h
the default so
xplicit copy of
ays of BPM
ny in-built ap

Put.get()
Put.get()
BPMGetPut,
, None)
M,None,VBP

ontal and vert

G CODE
the model ser

g code AT [11
as an educ
rts a variety

and optionally
or rectangular

rder symplect
able Hamilton
e fringe fields
orbit solver
for Taylor ma
ainst AT, Tra
identical resu
d that corres
dy Hamiltonia

contains symb
mplectic integ
rices are reco
sed in AT) or

rovides code
ic objects.

horizontal and
urce and plot
f the Array of
values makes

pplication, the

,None,

PM,None)

tical BPMs.

rver is similar
1] in MML. It
cational and
of integrators
in C++:

r magnets in

tic integrators
nians

ap extraction
cy-3 [12] and

ults to within
sponding co-
an and fringe

bolic matrices
gration for all
overed by the

by automatic

e

d
t
f
s
e

r
t
d
s

n

s

d
n
-
e

s
l
e
c

Proceedings of IPAC2011, San Sebastián, Spain WEPC159

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems 2359 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

differentiation (used in MADX-PTC and Tracy-3). In the
case of automatic differentiation the recovered matrices
are identical to the analytic solutions, to within numerical
precision. The subset used in the model server is pure
Python and Numpy, and uses the 4-D matrix solutions of
the expanded paraxial Hamiltonian (see Eq. 1) [14]
(transverse co-ordinates in scaled momentum,
longitudinal co-ordinates in relative momentum
deviation), and the linear part of the SLAC-75 [15] dipole
fringe field, taking into account field integral and pole
gap. This is adequate for linear optics in an easy-to-
understand code as a proof of concept. If required, non-
linear elements and solvers are available as drop-in
replacements.
 = − + 	 + (1)

The uncoupled Twiss functions are calculated from the
one-turn matrix and propagated through each element,
and the analytic orbit response matrix is then calculated
from the Twiss functions.

Lattice Description
The lattice is read in Tracy-3 format by a recursive

descent parser, with the Tracy-3 lattice file generated
from an AT deck, which is the master lattice format at
Diamond. The AT deck is not read directly, as it is stored
in the MATLAB language and so would require a
complete MATLAB parser. The simplified domain-
specific lattice languages, such as MAD (of which Tracy-
3 is a variant), are therefore more suitable for interchange.

Model Server
The model server is a Python XMLRPC [16] server

running as a web service on port 8080. XMLRPC
provides a simple transport mechanism as it supports the
common cross-language types of integer, string, floating
point, heterogeneous list (called array) and dictionary
(structure) and provides clients and servers in many
languages. Whilst the serialization of messages can be up
to 20 times larger than their native storage, this is not a
significant limitation, and for large data sets this can be
improved by using the base 64 to encode large arrays as
binary blobs, making the overhead only 30%. An
application of this would be to support the return of turn-
by-turn tracking data from all BPMs.

On start-up the model server reads a lattice file from
disk and calculates positions, initial Twiss functions and
the response matrix. It then accepts magnet set-point
changes and returns closed orbits, as measured by the
BPMs, Twiss functions at all lattice points, and tunes.
Subsequent changes are processed using a command to
run the simulator.

STATUS
To date the application, model server and interface to

the Diamond control system are working. The built-in

applications support plotting of data for the families and
some elementary physics functionality, orbit correction,
and beta function measurement. The command line
interface and scripting is working, but the management of
global name space needs improving, and all the
configuration of interface parameters is hard-coded for
the Diamond storage ring. At present all the application
components run in the Qt application thread, so any errant
script or command can lock the application up. The Qt
user interface needs developing to include resizing, menu
functions, etc.

CONCLUSION
The work to date has validated the initial assumptions

that Python together with the support packages make a
rich environment suitable for developing accelerator
physics tools. However, Diamond’s needs have meant
that this work has had low priority and so the application
as yet is no more than a proof of principle. Considerable
work would be required to develop a usable tool.

Furthermore the value of this environment needs to be
considered, in the context of the acceptability of a
Python-based application in comparison to a MATLAB-
based one for the intended users, operations staff and
accelerator physicists.

REFERENCES
[1] R.P. Walker, “Commissioning and Status of the

Diamond Storage Ring”, APAC 2007, Indore, India
[2] G. Portmann, et al, “An Accelerator Control Middle

Layer Using MATLAB”, PAC 2005, Knoxville,
Tennessee

[3] http://www.python.org/
[4] http://numpy.scipy.org/
[5] http://matplotlib.sourceforge.net/
[6] http://www.riverbankcomputing.co.uk/software/pyqt/

intro
[7] M. G. Abbott, et al, “Diverse uses of Python at

Diamond”, PCAPAC 2008, Ljubljana, Slovenia
[8] S. Molloy, S. Boogert, “Serpentine : A New Code

For Particle Tracking”, IPAC 2011, Kyoto, Japan
[9] http://code.google.com/p/spyderlib/
[10] http://pyqwt.sourceforge.net/
[11] A. Terebilo, “Accelerator Modelling with MATLAB

Accelerator Toolbox”, PAC 2001, Chicago, Illinois
[12] J. Bengtsson, Tracy-3, Private communication
[13] http://mad.web.cern.ch/mad/
[14] J. Bengtsson, “TRACY-2 User’s Manual”, SLS

Internal Document, February 1997
[15] K. L. Brown, “A First and Second Order Matrix

Theory for the Design of Beam Transport Systems
and Charged Particle Spectrometers”, SLAC 75,
1982

[16] http://www.xmlrpc.com/

WEPC159 Proceedings of IPAC2011, San Sebastián, Spain

2360C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

06 Beam Instrumentation and Feedback

T04 Accelerator/Storage Ring Control Systems

