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Abstract

In this contribution a procedure for automatic pole fitting
and external Q-value estimation for complex spectral data
is presented. This approach works on scattering parameters
either measured or resulting from numerical simulations.
We present the algorithm and an application example.

INTRODUCTION

The experimental characterization of RF structures like
accelerating cavities often demands for measuring resonant
frequencies of eigenmodes and corresponding (loaded) Q-
values over a wide spectral range. A common procedure to
determine the Q-values is the -3dB method, which works
well for isolated poles, but may not be applicable directly
in case of overlapping multiple poles residing in close prox-
imity (e.g. for adjacent transverse modes differing by polar-
ization). Although alternative methods may be used in such
cases, this often comes at the expense of inherent system-
atic errors. We have developed an automation algorithm,
which not only speeds up the measurement time signifi-
cantly, but is also able to extract eigenfrequencies and Q-
values both for well isolated and overlapping poles. At the
same time the measurement accuracy may be improved as
a major benefit. To utilize this procedure merely complex
scattering parameters have to be recorded for the spectral
range of interest. In this paper we present the proposed
algorithm applied to experimental data recorded for super-
conducting higher order mode damped multicell cavities as
an application of high relevance.

THEORY

Modes and Poles in RF-Structures

An arbitrary electromagnetic field inside an rf-structure
can be decomposed into an infinite set of specific
eigenmodes, which are a solution to the Helmholtz-
eigenproblem with appropriate boundary conditions. Here,
we will focus on the electric field, but the following argu-
ment holds for the magnetic field analogously. The electric
field inside an rf-structure can be written as:

E(r, t) =
∞
∑

i=1

Ei(r) e
−αit sin(ωit+ φi). (1)

with Ei(r), αi, ωi andφi denoting the spatial distribution
of the electric field, an attenuation constant, the resonance
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frequency of the eigenmode and the phase offset of the i-
th mode to a certain reference phase, respectively. In fre-
quency domain equation (1) reads as

E(r, ω) =

∞
∑

i=1

Ei(r)

ω − p
i

. (2)

The complex quantities are given by:

Ei(r) = Ei(r)e
jφi

p
i

= ωi + jαi (3)

with j2 = −1 denoting the imaginary unit.
As a consequence of equation (2), also scattering param-

eters, which are derived from either the electric or magnetic
field by means of a modal development, can be written as

S(ω) =

∞
∑

i=1

ai

ω − p
i

, (4)

with ai resulting from an integration of the spatial field dis-
tribution Ei(r) over selected cross sections with a subse-
quent weighting. For most technical applications, the num-
ber of modes can be reduced to a finite number.

In the following considerations it is assumed that com-
plex scattering parameters have been sampled at discrete
frequencies:

ωi = {ω1, ..., ωn}

S = {S
1
, ...Sn}. (5)

Initial Resonance Frequency Estimation

For the proposed pole fitting algorithm, an initial
knowledge of the resonance frequencies’ positions in the
recorded data set is necessary. For this first estimate the
following technique can be employed: With the discrete
convolution kernel

g := {1,−2, 1} (6)

the second derivative of the measured spectrum can be ap-
proximated (neglecting a constant scaling factor) as

S′′ ≈ g ∗ S. (7)

In the approximated second derivativeS′′, resonance peaks
will prominently stand out against the background noise
and can be automatically extracted.
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Pole Fitting

With this first estimate of the resonance frequencies an
initial fit can be performed. For this purpose, we assume
that all poles are well separated. In this case the scattering
parameters in the vicinity of the k-th pole can be approxi-
mated as:

S(ω) ≈
ak

ω − p
k

+Rk, (8)

with Rk summarizing the influence of all other poles as a
constant term [1]. For the i-th sampled frequency point, (8)
reads:

Si(ωi)(ωi − p
k
)−Rk(ωi − p

k
) = ak. (9)

By taking a subset of the data in the vicinity of the initial
resonance frequency, an overdetermined system of equa-
tions can be assembled:







ω1S1

...
ωnSn






=







S
1

ω1 1
...

...
...

Sn ωn 1











p
k

Rk

ak −Rkpk



 . (10)

Its least square solution yields an initial estimate of the un-
known pole parameters.

In a subsequent step, the initial fit is successively cor-
rected. It is assumed that all but the k-th pole are correct.
In this case, equation (8) can be written as

S(ω) =
ak

ω − p
k

+Rk(ω), (11)

with a frequency dependent residualRk(ω) .
Similar to (8) an overdeterminedsystem of equations can

be assembled, whose solution is a new set of parametersp
k

andak for the k-th pole. This process of correcting single
poles is repeated successively for all poles until the pole pa-
rameters have converged and no further improvement can
be achieved. The resulting poles are the best found approx-
imation of the data set.

APPLICATION EXAMPLE

In this section we present an application example of the
proposed pole fitting scheme. As input data we use com-
plex scattering parameters measured for a 1.5 GHz seven-
cell CEBAF upgrade-type SRF cavity (R100-3, [3]) at 2
K in a vertical test stand. The transmission was measured
between the input coupler and one of the two higher or-
der mode couplers with a resolution of 10 kHz. To reduce
the number of modes necessary for the pole fit, the phase
of the scattering parameters was purified from the spurious
phase of the connected coaxial cables. This significantly
reduces the number of necessary modes. Figure 1(a) shows
the magnitude of the measure transmission in theTM110

pass band. Figure 1(b) shows the magnitude of the approx-
imated second derivative using equation (7).

The peaks above -90dB were taken as initial guess for
the resonance frequencies. For the subsequent fit, all data
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Figure 1: (a) Magnitude of transmission in theTM110 pass
band measured at R100-3 at 2K in vertical test bench. (b)
Magnitude of the second derivative of the transmission.
Each peak indicates one resonance frequency and is addi-
tionally marked by a red line.

points around the initial resonance frequencies within an
interval of 10dB were considered. After the initial fit, ten
subsequent iterations were performed for error correction.

Figure 2 shows the measured data (black dots) and the
spectrum reconstructed from the fitted poles (equation (4)).
Both the measured data and the spectrum reconstructed
from the fitted poles are in excellent agreement, indicat-
ing that the pole fitting algorithm is working properly.
Figure 3 shows the external Q-factors computed from the
fitted poles. Here, the red circles indicate the external Q-
values measured directly using the -3dB method. The sec-
ond, forth and sixth poles (indicated by green circles) are
overlapping with other poles and could therefore no be
measured directly. In such cases more error-prone mea-
surement techniques need to be applied, here a worst case
approximation using only half of the 3dB bandwidth. The
successful solution of this experimental issue is a main ben-
efit of the used pole fitting algorithm. In fact, the algorithm
can resolve overlapping poles. A comparison of the mea-
sured and reconstructed spectra in Fig. 2 shows that over-
lapping poles are excellently fitted thereby delivering both,
loaded Q-values and resonance frequencies, precisely.

Another discrepancy between measured and fitted data is
obvious for the last two poles amounting to approximately
15% for the Q-values. Here, the sampling resolution of 10
kHz was 6 times larger than the bandwidth of the two poles
(≈ 1.6 kHz). Yet, even with this rather strong undersam-
pling, the fit is able to deliver reasonable Q-values.

WEPC098 Proceedings of IPAC2011, San Sebastián, Spain

2242C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques



2.12´109 2.18´109 2.24´109
f �Hz0

-40

-80

-120

ÈSÈ�dB

(a)

2.12´109 2.18´109 2.24´109
f �Hz0

argHSL

(b)

Figure 2: Magnitude (a) and phase (b) of the measured
(black) and fitted (red) transmission in theTM110 pass-
band. The fitted and measured spectra are in excellent
agreement except for a resonance at 2.23 GHz, which was
hardly detectable since residing in the noise level below
-110 dB. This mode was therefore not included in the fit-
ting process.
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Figure 3: External Q-values: Blue crosses indicate fitted
q-values, red circles indicate resonances measured with the
3dB method. Green circles indicate external Q values mea-
sured with the 3dB half method.

CONCLUSIONS

In this contribution we presented an automatic pole ex-
traction algorithm which allows for the computation of ex-
ternal Q-values from measured spectra. The pole fitting is
a two step process with first step being an initial fit, which
is improved by successive corrections in the second phase.

We demonstrated the powerful potential of the algorithm
by means of fitting complex scattering parameters as mea-
sured for a multi-cell SRF cavity at JLAB. Even with a
very moderate sampling resolution, the fitted Q values and
the values extracted from the pole fit are in excellent agree-
ment. This can be linked to the higher dynamic range of
the proposed method: While measurement techniques typ-
ically rely on data within the 3dB bandwidth of the reso-
nance, the proposed method can use a considerably larger
range for the fitting process.

A second advantage results from the ability to accurately
fit poles residing in very close proximity and resolving even
overlapping modes. Usually in this case, the -3dB method
is not directly applicable to measure these poles correctly
and thus other less precise methods have to be used. We
have shown that the proposed correction scheme can even
resolve overlapping poles. Thus, information on resonance
frequencies and Q values can be extracted precisely which
would otherwise be inaccessible by experimental measures.

Last but not least, one major advantage results from
massive time savings that can generally be expected by
utilizing the automatic fitting routine. As in the exam-
ple presented here, a laborious quality assurance program
is carried out at JLab for each production type cavity to
characterize its broadband damping efficiency. While the
usual experimental time effort results in several hours per
cavity, the fitting process is performed in a few seconds
on a conventional workstation utilizing merely the mea-
sured transmission spectra, which takes a few minutes at
most. This grants to perform even more detailed studies
not practicable under usual laboratory constraints, e.g. al-
lowing to record a wider spectral range with better reso-
lution in a reasonable time scale. For instance, by em-
ploying our newly developed routine, we were able to per-
form a detailed HOM survey for the first fabricated CEBAF
upgrade type cryomodule R100 housing eight seven-cell
cavities [3]. Hereby, we have completed full-string mea-
surements in 8 different experimental configurations within
less than three working days, which otherwise would have
resulted in a prohibitively vast laborious effort of several
weeks or months with present experimental techniques.
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