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Abstract

Any introduction on beam dynamics describes the field
homogeneity of the accelerator magnets using local deriva-
tives. These are then typically described as plane circu-
lar multipoles or 2D harmonics; solutions to the potential
equation. The high current operation, foreseen for SIS100
accelerator of FAIR, requires an in detail understanding of
the different beam effects, driven by the resonance of the
magnets. Therefore different multipole sets were devel-
oped and are now finalised in the Local Elliptic Toroidal
Multipoles. These are a first order approximation while the
plane circular ones are a zero order one in the inverse aspect
ratio.

INTRODUCTION

The path of a charged particle beam is deviated in a mag-
netic field. For uniform dipole fields this path will be a
circular trajectory. Standard beam dynamcis then describe
higher order distortions by a Taylor series expansion in the
transveral coordinates of the tripod moving with the parti-
cle. In practise these field distortions are described using
2D harmonics; an approach of sufficient quality as long as
the sagitta within the magnet is so small that the resulting
field change is negligible.

For machines with a small bending radius this simplifac-
tion is not necessarly valid. Uniform Local Toroidal Mul-
tipoles allow presenting the field deterioriation with a con-
cise representation witout the aforementioned artifact.

MULTIPOLE EXPANSIONS FOR
STRAIGHT MAGNETS

Plane circular multipoles

The irrotational source-free plane magnetic field is ex-
panded in Cartesian or polar coordinates as a complex field:

B(z)=By(x, y)+iBx(x, y)= B0

M∑

m=0
Cm

(
x+iy
RRef

)m

=By(r, θ)+iBx(r, θ) = B0

M∑

m=0
Cmrmeimθ.

(1)

Plane elliptic multipoles

In a magnet with a rectangular gap an ellipse as refer-
ence curve covers a larger area than a circle. So it is ad-
vantageous to use elliptic coordinates x = e cosh η cosψ
and y = e sinh η sinψ, with a, b and e =

√
a2 − b2 the

major, minor semi-axes and the eccentricity of the refer-
ence ellipse, which is expressed in the above coordinates
by η = tanh−1(b/a). The Cartesian and the elliptic coor-
dinates are connected by a conformal map:

z = x+ iy = e cosh(η + iψ) = e coshw. (2)

Solving the potential equation by separation leads to hyper-
bolic functions in η and trigonometric functions in ψ. The
complex field expansion is B(w) = By(η, ψ)+iBx(η, ψ):

B(w) = B0

(
E

2
+

M∑

n=1

En
cosh[n(η + iψ)]

cosh(nη0)

)

.

In view of the transformation (2) expansions for the same
field are related. In fact:

cosh[n(η + iψ)] = cosh(nη) cos(nψ) + i sinh(nη) sin(nψ)
=

∑n
m=0 [Re(tm,nz

m) + i Im(tm,nz
m)]

(3)
with the residue

tmn = Res
(
sinhw cosh(nw)/ coshm+1 w),w = iπ/2

(4)
Also from the values for the En values for the Cm may be
found. The latter are not exactly the same as those found
from the Euler formulae belonging to the expansions (1)
but often give a better approximation.

FIELD EXPANSIONS FOR CURVED
MAGNETS

In these cases a torus segment of circular or elliptic cross
section is used as reference volume. It is assumed that the
field is independent of the toroidal (= azimuthal) variable
φ. So the potential equation contains only the two variables
occurring in the cross section φ =const. It cannot be solved
by separation of variables but is amenable to approximate
R-separation: The Laplacian ΔΦ contains a term which
accounts for the curvature Rc. This is linear in ε ∝ 1/Rc,
the inverse aspect ratio of the torus. Changing the depen-
dent variable from Φ enable to

√
hΦ (where h is propor-

tional to the metric coefficient of the toroidal variable and
is a linear polynomial in ε) gives the curvature term a de-
pendence on ε2. This may be neglected. The differential
operator so truncated is the Laplacian in plane polar or el-
liptic coordinates and is separable. However, the complex
field expansion is no longer possible in such local rotational
coordinates. Further the basic vector fields found from gra-
dients of particular solutions for the potential are no longer
orthogonal among each other.
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Local circular toroidal coordinates

These coordinates are obtained by rotating off-centre di-
mensionless polar coordinates ρ, ϑ by an angle ϕ:

X + iY = RC heiϕ, Z = R0 sinϑ,
h = 1 + ε ρ cosϑ ε = R0/RC

RC = major radius = radius of curvature;R0 = minor radius
= reference radius; ε the inverse aspect ratio. The Cartesian
coordinates X,Y, Z are centred in the torus centre; Z is
normal to the equatorial plane.

The approximate solutions of the potential equation
obtained by the approximate R-separation are: Φm =
h−1/2 ρm eimϑ, m = 0, 1, 2, .... Introducing Cartesian co-
ordinates x′, y′ in the plane ϕ = const:

z′ = x′ + iy′ = R0 ρ eiϑ (5)

we get the approximate circular toroidal multipoles:

Φm(x′, y′) =

(
z′

R0

)m
− ε

4

[(
z′

R0

)m+1

+

(
z′

R0

)m−1 |z′|2
R2

0

]

.

(6)
Corresponding (normal and skew) vector fields are (m = 1,
2, ...):

�Tm(x′, y′) = − R0

m ∇′Φm(x′, y′),
�T
(n)
m (x′, y′)=Re(�Tm(x′, y′)), �T

(s)
m (x′, y′)=Im(�Tm(x′, y′)).

Local toroidal elliptic coordinates

The coordinates are quite new. They are obtained by
rotating off centre elliptic coordinates η̄, ψ̄ by an angle ϕ̄:

X + iY = RC h̄e
iϕ̄ Z = RC ē sinh η̄ sin ψ̄

h = 1 + ē cosh η̄ cos ψ̄ .

A segment of a torus with elliptic cross section is given
by 0 ≤ η̄ ≤ η̄0, −π ≤ ψ̄ ≤ π, −ϕ̄0 ≤ ϕ̄ ≤ ϕ̄0, with
the elliptic aspect ratio η̄ = ē

RC
and the eccentricity ē =√

a2 − b2.
Apart from a factor R2

C ē
2/

[
cosh (2η̄)− cos(2ψ̄)

]
the

potential equation is:

[
∂2

∂η̄2
+

∂2

∂ψ̄2
− ε̄

h̄

(

sinhη̄cosψ̄
∂

∂η̄
+cosh η̄ sin ψ̄

∂

∂ψ̄

)]

Φ̄=0.

1√
h̄

[
∂2

∂η̄2
+

∂2

∂ψ̄2
− ε̄2

8h̄2

(
cosh(2η̄)−cos(2ψ̄)

)
](√

h̄Φ̄
)
=0.

Approximate multipoles are solutions accurate to the first
order in ε̄

Φ̄cn(η̄, ψ̄) = S(η̄, ψ̄) cosh(nη̄) cos(nψ̄) +O(ε̄2), (7)

Φ̄sn(η̄, ψ̄) = S(η̄, ψ̄) sinh(nη̄) sin(nψ̄) +O(ε̄2), (8)

with

S(η̄, ψ̄) =
(
1− ε̄

1

2
cosh(η̄) cos(ψ̄)

)
(9)

Figure 1: The rotating coil probe within the curved magnet
aperture.

The corresponding toroidal components of the magnetic
induction are obtained by gradients. These are rather in-
volved in elliptic toroidal coordinates. We prefer to define
them in the Cartesian coordinates given in (5)

�T (n)
n (x′, y′) = − ē

m
∇′Φ̄cm (x′, y′) (10)

�T
(s)
M (x′, y′) = − ē

m
∇′Φ̄sm (x′, y′) (11)

�̄B (x′, y′) =
M∑

m=1

(
r̄m �T (n)

n (x′, y′) + s̄m �T (s)
m (x′, y′)

)

The real, the imaginary part respectively of (7–
8) are separately used to replace cosh(nη̄) cos(nψ̄),
sinh(nη̄) sin(nψ̄), respectively by polynomials in x′, y′.
Taking into account the factor S(η̄, ψ̄) leads to the final re-
sult:

Φ̄cm (x′, y′) =
n∑

m=1

tmnRe [Φm(x′, y′)] (12)

and a corresponding result Φ̄sm (x′, y′) and the imaginary
part. The Φx′,y′ are given in (5). The connection between
the Fourier components of the rotating coil voltage and the
expansions coefficients r̄m, s̄m can then be done analo-
gously to the case of the circular toroidal multipoles [1].

APPLICATION

The following description expects that the reader has a
basic understanding of rotating coil measurements (see e.g.
[2]); a longer deviation is given [1]. Here the model of
the coil probe in the toroidal field is used to show which
effects are to be expected from these new multipoles (see
also Fig. 1) . Imagine a pure radial coil with one wire in the
rotation centre and the other one at the radius R. Its axis is
in the equatorial plane of the torus segment. Then the flux
seen by the coil probe at any angle is given by

Φ(φ) =

∫ r2

r1

∫ L

−L

( �B · �er) dz dr . (13)
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This flux can then be expressed by

Φ(φ) = Kn [s̄mCmn cos(nφ)− r̄mDmn sin(nφ)] (14)

using the geometric coefficients of the coil probe Kn (see
e.g. [2]). The usual circular multipoles cn = bn + ian can
then be given by

an = −
M∑

m=1

s̄m Cmn, bn =

M∑

m=1

r̄m Dmn. (15)

Matrices Cmn andDmn are equal as long as the coil probes
axis is tangential to the bigger torus circle with the middle
of the coil the tangential point. The matricesCmn andDmn

show how the multipoles correspond to each other. If these
matrices had only non zero elements on the diagonal each
toroidal multipole would be only be scaled.

Each matrix element of C and D comprises of 2 terms.
The conversion matrix (Cnm) can be written in the follow-
ing form

C = I − ε (U + Lco) . (16)

The matrix consists of 2 submatrices whose magnitude de-
pend on the ratio ε = R0/RC . U is given by

U =
n

4(m− 1)
δn+1,m . (17)

The matrix Lco is given by

Lco = m
l2

24R2
0

− Km+2

4 (m+ 1)Km
δn−1,m . (18)

It gives a “feed up” of one multipole to the next. The terms
Km are typically of the same order of magnitude. Thus the
first term will be the dominant one for any real coil probe
length (typically much larger than the reference radius).

With these results the following conclusions can be
drawn: In a gedankenexperiment one could make the term
Km one by using a coil probe with r2 = R0 and r1 = 0 and
the number of windings = 1/l. Then even lim l→0 Km = 1
would hold. This would be a coil of zero length and thus
a coil probe in a plane. For l = 0 the first term would be
zero and the second term 1/[4(m+1)]. This shows that the
approximate correspondence between plane circular multi-
poles and circular local toroidal coordinates is a “feed up”
and “feed down” of each multipole to his neighbours.

If one uses the coil probe of realistic length (or the length
of the dipole magnet) one can estimate the magnitude of
the errors made as well as the multipoles affected using
the standard 2D plane multipoles instead of the appropriate
local toroidal ones.

Magnitude of the terms

The formulae given above were evaluated for the follow-
ing different machines: the Large Hadron Collider (LHC)
at CERN[3], SIS100 [4, 5] and SIS300 at GSI, and NICA
[6] at Dubna (see Table 1).

Table 1: Parameters for different machines.
RC [m] R0 [mm] ε [units] L [mm]

LHC 2804 17 0.04 600
SIS100 52.5 40 7.62 600
SIS300 52.5 35 6.67 600
NICA 15 40 26.67 600

The parameters given in Table 1 were used to calculate
the coefficients of the matrices. Accelerators require a field
description with an accuracy of 1 unit and roughly 0.1 unit
for the field homogeneity (1 unit equals 100 ppm). There-
fore any contribution less than 1 ppm can be ignored.

Due to the circumference of the LHC ε is very small and
thus the correction of all matrices are very small (less than
1 ppm) except for the matrix Lco. It’s values close to the
diagonal get to a size of 20 units describing a “feed up”.
Thus only the main field creates a spurious quadrupole of≈
3 units. All other harmonics are small and thus the spurious
ones well below 1 ppm.

For machines with an aspect ratio as found for SIS100 or
SIS300 the matrix U is in the order of 100 ppm. It can be
neglected except for the main multipole. The values of the
matrix Lco get very large. So the standard model of plane
circular multipoles is not appropriate for these machines.

CONCLUSION

Local circular and elliptic toroidal multipoles were pre-
sented. The modell of a rotating coil probe shows how
these multipoles match to the plane circular multipoles
commonly used to describe the field distortion in the mag-
net.

The important ratio is ε or ε̄ and coorelates the beam size
to the radius of curvature. The Gedankenexperiment with
a rotating coil probe allows to show that for a infinite thin
plane the circular multipoles will smear to the neighbouring
toroidal multipoles. A coil with the length of the magnet
modells precisely the artifacts to expect if plane circular
multipoles are used to descibe the field distortions for a
beam with a large sagitta within the dipole.
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