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Figure 7: Particle Beam Loss in the MEBT. 
 
The RMS emittance evolution can be seen in Figure 8. 

An increase of ~20% has been observed transversally, 
while there is almost no increase in the longitudinal 
plane (see Figure 6 for details). The growth is higher than 
previous simulations have indicated. We believe that this 
is caused by factors related to the input beam distribution. 
By employing a more realistic beam, the halo that has 
developed in the RFQ will continue to be tracked through 
the MEBT following an amplified oscillation. 

Furthermore, the MEBT has been optimised for a 
lower input emittance (εt ~0.25 Pi.mm.mrad, εz ~0.14 
Pi.deg.MeV - RMS, Normalised). The current MEBT 
input distribution (see Figure 4) has an RMS emittance 
more than 20% higher than the design value. This 
distribution reflects the latest beam emittances achieved 
in the FETS ion source and LEBT. Efforts are currently 
being put into reducing the ion source output emittances 
to lower values. Consequently, this will improve the beam 
transmission and quality throughout the LEBT, RFQ and 
MEBT. At the same time various MEBT configurations 
are being tested to improve the input emittance 
acceptance. 

The chopper simulations have generally confirmed 
previously obtained results. In all simulations we have 
applied a ±1.5 kV voltage on the slow chopper electrodes 
and a ±1.3 kV on the fast chopper. When using ideal 
distributions, the separation between the 99% emittance 
ellipses of the deflected and undeflected beams is very 
clear for both the fast and slow choppers indicating a 
nearly perfect chopping.  

When using a more realistic beam, some overlap 
between the halo particles is observed. The chopping 
efficiency is slightly reduced to ~99%. The main limit to 
increasing this efficiency is given by the voltage that can 
be applied on the chopper plates. However, as the 
available voltages are already approaching an upper limit, 
it is quite important to understand the behaviour of the 
residual chopped beam. We have discovered that a very 
small fraction of the deflected beam will survive to reach 
the end of the MEBT. This can be quite problematic 
especially if these particles are accelerated to higher 
energies. To mitigate this, collimators will have to be 
placed at key locations in the MEBT and linac [9]. 

 
Figure 8: Emittance evolution in the MEBT. 

 

CONCLUSIONS 
A new model has been prepared to simulate the beam 

behaviour in the FETS MEBT line. It uses The General 
Particle Tracer to run particle dynamics simulations. The 
model uses inbuilt GPT elements as well as field maps 
generated with external EM simulation tools. It allows the 
characterisation of the MEBT performance and the beam 
quality in terms of emittance growth, beam halo, 
transmission and chopper efficiency. While the new 
model has confirmed many results previously obtained 
with other beam dynamics codes, it has highlighted 
possible issues in particular to do with emittance growth 
when using a more realistic beam distribution with higher 
input emittance. 

The new model opens the way for a full start to end 
beam dynamics simulation study of the Front End Test 
Stand using a single simulation tool. 
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