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Abstract

Transverse betatron coupling in the LHC is measured
from Fourier analysis of turn-by-turn beam oscillations ex-
cited by AC dipoles. The use of the AC dipole for optics
measurements induces a small systematic error which can
be corrected with an appropriate data interpretation. An al-
gorithm to apply this correction to the measurement of the
coupling resonance driving terms is developed and success-
fully applied to the LHC.

INTRODUCTION

An AC dipole excites a coherent beam motion in a ring
like a kicker magnet for optics measurements [1]. It pro-
duces a resonance near the betatron frequency and drives
the beam. Unlike kickers, the AC dipole can produce a sus-
tained coherent motion with almost no emittance growth
[1] and this made it the primary exciter of the LHC [2, 3].
Turn-by-turn position data of the excited motion from beam
position monitors (BPMs) allows prompt measurements
of optics parameters. Coupling resonance driving terms
(CRDT) due to skew quadrupole fields can be also deter-
mined from corresponding spectral components of the turn-
by-turn position [4].

As other transverse resonance sources, the AC dipole
produces a pair (sum and difference) of resonances [5] and
this may require a careful data interpretation to extract op-
tics parameters from measurements using the AC dipole
[6, 7, 8, 9]. This applies to not only 1D parameters but also
coupling [6, 7, 8] and nonlinear terms [6, 10]. The first al-
gorithm to remove this systematic effect for 1D parameters
and coupling was proposed in [7] and successfully tested in
the SPS for the measurement of the β-beating and modulus
of the coupling coefficient [8]. It has been demonstrated
that, for 1D case, the systematics effect of the AC dipole
is equivalent to an additional quadrupole at its location and
the motion can be well parametrized by introducing a new
set of optics parameters [9]. This idea of using a new set of
optics parameters is extended to the motion under the influ-
ence of skew quadrupole fields and AC dipoles and, based
on this, a method to measure CRDTs without the system-
atic effect of the AC dipole is proposed [11]. Given the
LHC has BPMs right next to each AC dipole, this method
allows to measure the amplitudes and phases of CRDTs
with a single excitation frequency in horizontal and vertical
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AC dipoles. This paper reviews the method and presents its
successful applications to the LHC.

THEORY

In the following, we use the normalized complex coordi-
nates defined with β andα functions: z̃ ≡ z+i(αzz+βzz′)
where z stands for either x or y. If positions at two ad-
jacent BPMs, located at s1 and s2, are known, z̃ at s1 is
constructed as [12]

z̃s1 =
1

i sinψzs2,s1

(
eiψ

z
s2,s1 zs1 −

√
βzs1
βzs2

zs2

)
, (1)

where ψzs2,s1 is phase advance from s1 to s2. Please note
that this assumes the lattice between s1 and s2 contains
only small errors.

1D Driven Motion

When driven by an AC dipole, turn-by-turn position on
n-th turn at the location s can be expressed as [9, 11]

x̃s,n = Ah
√
βhs e

−2πiνhn−iψh
s,sh

−iχh

, (2)

where χh and sh are the phase and location of the AC
dipole, Ah, νh, βhs and ψhs,sh

are the constant amplitude,
tune, β-function, and phase advance of the driven motion.
The β-functions and phase advances of the free and driven
motions are related by

βxs =
1 + (λh)2 + 2λh cos(2Ψh

s,sh
)

1 − (λh)2
βhs (3)

tanΨx
s,sh

=
1 − λh

1 + λh
tan Ψh

s,sh
, (4)

where δh = νh − νx and λh = sin(πδh)/ sin[π(νh + νx)]
are small parameters, typically δh � 0.01 in the LHC, and
Ψx
s2,s1 and Ψh

s2,s1 are shorthand notations of

Ψx
s2,s1 = ψxs2,s1 − πνx (5)

Ψh
s2,s1 = ψhs2,s1 − πνh . (6)

Equation (2) indicates that the β-function and phase ad-
vance of the driven motion are direct observables in this
case [9]. The LHC has BPMs right next to each AC dipole
and this allows us determine Ψh

s,sh
and hence βxs and ψxs,sh

as well with Eqs (3) and (4), from a single excitation of the
AC dipole. The above discussion also applies to the motion
driven by a vertical AC dipole. We use a superscript v for
parameters of the vertical driven motion.
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Coupled Driven Motion

At the first order, turn-by-turn position of the motion
driven by skew quadrupole fields is given by [4]

x̃1
s,n = 2iAyf−

s

√
βxs e

−2πiνyn−iψy
s,s0

−iφy

+ 2iAyf+
s

√
βxs e

2πiνyn+iψy
s,s0

+iφy

(7)

ỹ1
s,n = 2iAx(f−

s )∗
√
βys e

−2πiνxn−iψx
s,s0

−iφx

+ 2iAxf+
s

√
βys e

2πiνxn+iψx
s,s0

+iφx

, (8)

where Ax, Ay , φx and φy are the constant amplitudes and
constant phases of the main betatron motions, s0 is the lo-
cation of the reference BPM and f−

s (f+
s ) is the CRDT of

the difference (sum) resonance:

f∓
s =

∑
j κsj

√
βxsj

βysj
e
−i(Ψx

s,sj
∓Ψy

s,sj
)

8i sin[π(νx ∓ νy)]
. (9)

In Eq (9), the summation runs over the skew quadrupole
fields and κsj and sj are the effective strength and location
of the j-th field. CRDTs, f∓

s , can be determined at each
BPM location from the corresponding spectral components
of the normalized complex position [4, 11, 13].

When the main motion is the driven motion excited with
horizontal and vertical AC dipoles, Eqs (7) and (8) are
modified to [11]

x̃1
s,n = 2iAvf−,v,h

s

√
βhs e

−2πiνvn−iψv
s,sv

−iχv

+ 2iAvf+,v,h
s

√
βhs e

2πiνvn+iψv
s,sv

+iχv

(10)

ỹ1
s,n = 2iAh(f−,h,v

s )∗
√
βvs e

−2πiνhn−iψh
s,sh

−iχh

+ 2iAhf+,h,v
s

√
βvs e

2πiνhn+iψh
s,sh

+iχh

(11)

and the direct observables become f∓,h,v
s and f∓,v,h

s . A
relation between f∓

s and f∓,h,v
s is given by

f∓
s =

1√
1 − (λh)2

sin[π(νh ∓ νy)]
sin[π(νx ∓ νy)]

[
ei(ψ

h
s,sh

−ψx
s,sh

)f∓,h
s

− λhe−i(ψ
h
s,sh

+ψx
s,sh

)(λc,h)∓1(f±,h
s )∗

− 2πiδhei(Ψ
h
s,sh

−Ψx
s,sh

)f̂∓,h
s,sh

− 2πiδhe−i(Ψ
h
s,sh

+Ψx
s,sh

)(λc,h)∓1(f̂±,h
s,sh

)∗
]
, (12)

where λc,h = sin[π(νh − νy)]/ sin[π(νh + νy)] is another
small parameter,

f∓,h
s =

1√
1 − (λh)2

[
e∓i(Ψ

v
s,sv

−Ψy
s,sv

)f∓,h,v
s

+ λve±i(Ψ
v
s,sv

+Ψy
s,sv

)f±,h,v
s

]
, (13)

and

f̂∓,h
s,sh

=
eπi(ν

h∓νy)sign(s−sh)

2i sin[π(νh ∓ νy)]

×
[
f∓,h
s − e−i(ψ

h
s,sh

∓ψy
s,sh

)f∓,h
sh

]
. (14)

We note f̂∓,h
s,sh

is the CRDTs which only includes the effects
from skew quadrupole fields between sh and s [6, 7, 8, 11].
Relations similar to Eqs (12)-(14) hold between f∓

s and
f∓,v,h
s as well. As the case of 1D parameters, having BPMs

next to the AC dipoles makes all the parameters on right-
hand-sides of Eqs (12)-(14) measurable and allows to de-
termine f∓

s from f∓,h,v
s or f∓,v,h

s , measured with a single
excitation frequency in horizontal and vertical AC dipoles.
We normally take the average of f∓

s from f∓,h,v
s and that

from f∓,v,h
s and this makes the result less sensitive to the

BPM calibration error [14].
As seen in Eq (12), f∓

s and f∓,h,v
s are different by a

global factor {sin[π(νh ∓ νy)]/ sin[π(νx ∓ νy)]} and this
is because resonance strengths depend on the tunes and the
AC dipoles effectively change them [6]. Because the sec-
ond to forth terms of Eq 12 are proportional to the small
parameters δh or λh, taking into account this global factor
and simply scaling f∓,h,v

s and/or f∓,v,h
s provides a good

approximation of f∓
s in many cases. However, this simple

scaling does not always work properly and sometimes we
must fully use Eqs (12)-(14), for instance when the mag-
nitudes of f−

s and f+
s are comparable. The next section

presents applications of the presented theory to measure-
ment and simulation data of the LHC.

APPLICATIONS

On July 2nd, 2011, the injection optics of the LHC
Beam2 was measured with both kickers and AC dipoles.
Figure 1 compares the amplitudes and real parts (effec-
tively showing the phases) of the CRDTs measured with
the kickers and AC dipoles. In this case, the simple scaling
and the full calculation using Eqs (12)-(14) have almost no
difference. Figure 2 shows the other measurement of the
CRDTs of the LHC Beam2 for the injection optics, per-
formed on February 20th, 2011. In this case, the full cal-
culation provides a better agreement with the result from
the kickers. The difference between the two cases is |f−

s |
is smaller and comparable to |f+

s | for Fig 2.
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Figure 1: CRDTs of the LHC Beam2 measured with the
kickers and AC dipoles. The simple scaling and full calcu-
lation provide almost identical result in this case.
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Figure 2: Another example of CRDTs measured with the
kickers and AC dipoles. The full calculation gives a result
closer to that from the kickers in this case.

Figure 3 compares the CRDTs of the collision optics of
the LHC Beam1, where β∗ is 1.5, 10, 1.5, and 3 m for
the interaction points 1, 2, 5, and 8, measured with the AC
dipoles on February 22nd, 2011, based on the simple scal-
ing and full calculation. This has been the case where we
observed the largest discrepancy between the scaling and
full calculation in the LHC, so far. The measurement is
done before any coupling correction is applied and |f+

s | is
comparable to or even larger than |f−

s | in some regions,
making the result from the simple scaling inaccurate.

To confirm that the result from the simple scaling can
be inaccurate on the level seen in Fig 3, a simulation is
performed with MADX [15]. Skew quadrupole magnets
in the model lattice are fitted to the measurement in Fig 3
to produce a similar situation. Then, a single particle is
tracked through this model lattice with an initial transverse
displacement, which simulates kicks, or with AC dipole
fields. Turn-by-turn position of the particle is recorded at
each BPM location and the same analyses as real measure-
ments are applied to the recorded data. Figure 4 compares
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Figure 3: CRDTs of the collision optics of the LHC Beam1.
A case where the largest discrepancy between the simple
scaling and the full calculation is observed.

 0
 0.02
 0.04
 0.06
 0.08
 0.1

|f− |

IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR1
LHC B1 collision simulation

Kicker
AC dipole, scale
AC dipole, full

-0.1
-0.05

 0
 0.05
 0.1

R
e[

f− ]

 0
 0.02
 0.04
 0.06
 0.08
 0.1

|f+
|

-0.1
-0.05

 0
 0.05
 0.1

2520151050

R
e[

f+
]

Longitudinal position  [km]

Figure 4: CRDTs in a simulated lattice reconstructed from
the kick and AC dipole excitations. Skew quadrupole errors
are based on the measurement in Fig 3.

CRDTs in the simulated lattice reconstructed from the sim-
ulated kick and AC dipole excitations. As clearly seen, the
result of the AC dipole from the full calculation agrees well
with the result of the kick, whereas the result from the sim-
ple scaling has a large discrepancy in some regions with
respect to that of the kick. In this way, both experiments
and simulations verify our algorithm and also show that the
simple scaling does not always work properly.

CONCLUSIONS

A method to measure the CRDTs using the AC dipoles
without the systematic effect of the AC dipole is presented.
It is tested in experiments and simulations of the LHC. The
method allowed to measure the amplitudes and phases of
the CRDTs without the systematic effect of the AC dipole
for the first time in a real machine.
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