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Abstract 
The MedAustron beam vacuum system is a complex 

system integrating different technical solutions from the 
source to the patient treatment rooms. The specified 
vacuum performances combined with the challenging 
integration issues require technical compromise which 
will be presented in this poster. The status of the design of 
the vacuum system will be reviewed and the pending 
issues will be explained. 

 

INTRODUCTION 
MedAustron is an accelerator complex for protons and 

ions dedicated to hadron-therapy and research. It consists 
of up to four different primary particle sources, a LINAC 
to reach the injection energy of 7 MeV/u, a synchrotron 
and transfer lines, which direct the beams towards the 
experimental areas or the medical treatment rooms. The 
synchrotron delivers protons in an energy range from 60 
to 250 MeV and carbon ions from 120 MeV/u to  
400 MeV/u. For experimental purpose it will be possible 
to accelerate protons up to 800 MeV. 

As in all particle accelerators, the particles will travel 
under vacuum to ensure the required beam lifetime and 
reduce the beam-gas scattering effects. However, as 
compared to particle accelerators for Physics, this medical 
accelerator has different operational and reliability 
requirements which impact the vacuum design and in 
particular its instrumentation and diagnostics. 

The MedAustron accelerator seen from the beam 
vacuum side can be subdivided in 5 zones: 
 The sources and Low Energy Beam Transfer 

(LEBT); 
 The Medium Energy Beam Transfer (MEBT); 
 The Synchrotron; 
 The High Energy Beam Transfer (HEBT); 
 The treatment rooms. 
The Sources will be procured and delivered equipped 

with all vacuum pumps and instrumentation in order to 
avoid later unnecessary optimisations. A similar approach 
has been approved with the pumps and instrumentation of 
the IH tank in the LINAC. 

The challenges with the MedAustron vacuum system 
are mainly focussed in three topics: integration of the 
pumping and instrumentation taking into account the 
density of beam instrumentation and diagnostics, the 
design of the dipole beampipes of the synchrotron and the 
injection and extractions in the synchrotron. The design of 
the vacuum components of the gantry and zones close to 
the treatment rooms are foreseen in a later stage. 

VACUUM REQUIREMENTS AND 
CONSTRAINTS 

General Considerations 
All the equipment operated at room temperature shall 

fulfil the Ultra High Vacuum (UHV) requirements to 
achieve the required beam lifetime and avoid vacuum 
related effects such as beam losses, activation of material 
and damage to cables and to electronics, neutralisation of 
ions, etc. 

In the LEBT, MEBT and HEBT, static pressures in the 
10-6 Pa range (10-8 mbar) after 48 hours of pumping are 
required. The synchrotron is more demanding in terms of 
pressures; static pressures in the 5.10-7 Pa range  
(5.10-9 mbar) after 48 hours of pumping are required. To 
steer and control beams, an important amount of beam 
instrumentation and monitors, more than 100, will be 
foreseen. This contributes to space constraints and 
limitations on the maximum pumping speed which can be 
made available. This implies tighter outgassing rate 
specifications and recommendations to use metallic 
materials on all equipment installed in the beam vacuum. 

Each beam or vacuum component will be leak tested 
and qualified regarding vacuum conformity prior to its 
installation in the accelerator e.g. total outgassing rate and 
residual gas composition. In case of non-conformities, 
alternative materials or design will be considered. 

Reliability and Redundancy 
The vacuum system is designed with built-in 

redundancy for the critical components. The malfunction 
of a single component of the vacuum system must not 
affect the availability of the machine for patient 
treatments. Where required, redundancy has been 
installed in order to avoid beam downtime. 

The vacuum system design and manufacture is 
therefore based on standard components, well-mastered 
technologies and materials. Spares will be available to 
maximise machine availability in the event of a 
component failure. 

Vacuum Sectorisation Layout 
The vacuum sectorisation (see Figure 1) has been 

defined to allow the sequential installation and 
commissioning of the accelerator and to limit the beam 
downtime in case of a brutal vacuum failure. In the 
HEBT, the need to continue the operation with beams in 
case of problems with one of the transfer lines to the 
treatment rooms has resulted in additional sector valves, 
right after the dog-leg beampipes. Similarly, the sources 
and the strip foil monitor (downstream the IH tank) can 
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be completely isolated for maintenance or repair 
purposes. The synchrotron has been subdivided in three 
vacuum sectors to reduce the pumping time and resources 
required during an intervention. 

Pumping and Instrumentation Layout 
The pumping and instrumentation layout (see Figure 2) 

has been defined according to the vacuum sectorisation 
and having in view to provide enough pumping and 
pressure gauges to monitor and interlock the vacuum 
system with the required redundancy. The permanent 
pumping will rely on ion pumps distributed all along the 
beam lines. In the LEBT, to cope with the gas load 
coming from the sources, a differential pumping by 
means of turbo molecular pumps is considered. In the 
synchrotron and in addition to ion pumps, NEG cartridges 
will be installed to fasten the recovery in case of vacuum 
venting to atmosphere. 

The roughing in the Synchrotron and in the HEBT will 
be made using mobile turbo molecular pumping stations, 
available off the shelf in industry, connected to the 
roughing valves distributed all around the beam lines. 

Pressure reading will be provided by means of Pirani 
gauges for the high pressure, cold cathode gauges for the 

UHV system as well as by the current of the ion pumps. 
Only passive gauges, i.e. no electronic on the head of the 
gauges, are considered to avoid problems with the 
radiation. Both the gauges and ion pumps will be used as 
trigger for the vacuum interlocks.  

Vacuum Engineering Issues 
The design of the MedAustron vacuum system was 

made considering the use of industrial standard flanges 
and gaskets. Conflat® flanges with a metallic copper 
gasket are preferred whenever possible for the beam 
vacuum pipes since providing the highest reliability in 
terms of leak tightness and lifetime. Conical flanges 
coated with enamel will be used in the synchrotron to 
isolate electrically each dipole avoiding perturbation 
induced by the Eddy currents during the fast cycling of 
the magnets. Exceptions exist for the beam 
instrumentation which requires the use of rectangular 
flanges in order to optimize the space available.  

The beampipes and pumping ports have standard 
designs since they shall not fulfill any specific impedance 
or higher order modes (HOM) requirements. This is not 
the case for the synchrotron dipole beampipes. To avoid

Figure 1: Vacuum sectorisation layout. 

 
Figure 2: Pumping and instrumentation layout. 
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