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Abstract 
Modern ERL projects use superconductive accelerating 

RF structures. Their RF quality is typically very high. 
Therefore, the RF voltage induced by electron beam is 
also high. In ERL the RF voltage induced by the 
accelerating beam is almost cancelled by the RF voltage 
induced by the decelerating beam. But, a small variation 
of the RF voltage may cause the deviations of the 
accelerating phases. These deviations then may cause 
further voltage variation. Thus, the system may be 
unstable. The stability conditions for ERL with one 
accelerating structure are well known [1, 2]. The ERL 
with split RF structure was discussed recently [3, 4]. The 
stability conditions for such ERLs are discussed in this 
paper. 

INTRODUCTION 
The scheme of an ERL with two accelerating structures 

is shown in Fig. 1. 
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Figure 1: Scheme of ERL with two linacs. 

Electrons are injected to the linac 1. After two passes 
through linac 1 and linac 2 they are used, for example, in 
undulators. After that electrons are decelerated. 

There are four electron beams in each linac 
simultaneously. Each beam induced large voltage in the 
linac, but the sum is not so large. If the phases of the 
beams vary, the sum voltage also varies, and initially 
small phase deviation may increase due to the dependence 
of flight times through arcs on the particle energy. This 
longitudinal instability is considered in our paper. 

THE VOLTAGE EQUATIONS  
To simplify the picture, consider each linac as one RF 

cavity. Its equivalent circuit is shown in Fig. 2. 
The gap voltage expression

( ) dtRUdtdUCIIdLU gb −−+= , Ib and Ig are 

the currents of the beam and of the RF generator, leads to 
the standard equation 
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Taking the effective voltage on the linac with number α 

in the form )Re( tieU ω
α

−  (ω is the frequency of the RF 

generator), one obtains: 
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Figure 2: Equivalent circuit of the RF cavity. 

where ωξω ααααα )2/1(/1 QCL −==  is the 

resonant frequency, αααα CLRQ = >>1 is the 

loaded quality of the cavity, CLQR == αααρ /  

and αR  are the characteristic and the loaded shunt 

impedances for the fundamental (TM010) mode, and 

αα gb II  and  are the complex amplitudes of the beam 

and (reduced to the gap) generator currents 
correspondingly. We are interested in the case of constant

αgI . The beam currents αbI  depend on all Uα due to 

phase motion. Linearization of Eq. (2) near the stationary 
solution  
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Strictly speaking, Ib depends on the values of U at 
previous moments of time, so Eq. (4) is valid only if the 
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damping times ωαQ  is much longer than the time of 

flight through the ERL. 

THE STABILITY CONDITIONS 

Considering the exponential solutions ( )2exp tωλ  of 

system of linear differential equations Eq. (4), one can 
find the stability conditions. Indeed, the system Eq. (4) 
corresponds to the system of the linear homogeneous 
equations UMU δλ =δ  with the consistency condition

0=− EM λ . Re(λ) < 0 for all roots of this equation (i. 

e., eigenvalues of the matrix M) is the stability condition. 
The stability condition for ERL with one linac was 

derived in paper [2]. In this case 
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and the characteristic equation is 

( ) 02 =+− MMTrλλ   (6) 

According to Eq. (5) the stability condition is 
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One can say, that the beam “active conductivity” 

( ) 2ImImReRe UIUI bb ∂∂∂∂ +  has not to 

exceed the linac active conductivity ( ) 1−Qρ . 

For the ERL with two linacs 
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and the characteristic equation is (see, e. g., [5]) 
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4 AS  are the sums of main 

minors of the matrix M. The necessary conditions for 
stability (Re(λ) < 0 for all four roots of Eq. (9)) is 
positivity of all the coefficients of the polynomial Eq. (9). 
In particular, the only independent on detunings ξ1 and ξ2 
condition S1 < 0 gives 
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      (10) 
The sufficient conditions are given by the Liénard-

Chipart criterion [5]. It requires the positivity of of all the 
coefficients of the polynomial Eq. (9) and the third 
Hurwitz minor 

( ) 0,0,0,0 2
3413213421 >−−=Δ>>< SSSSSSSSS  (11) 

In the simplest case of the isochronous ERL arcs the 
conductivity matrix is zero. Then it is easy to proof, that 
all stability conditions are satisfied. 

As the qualities of the superconducting cavities are 
very large, it is interesting to consider the opposite 
limiting case, neglecting small terms 1/Q1,2 in the matrix 
Eq. (8). Then all stability conditions do not depend on the 
beam current. They depend only on the ratio ρ1/ρ2 and the 
beam conductivity matrix, which is fully defined by the 
ERL magnetic system. 

THE CONDUCTIVITY MATRIX 
To proceed further, we have to specify the elements of 

the beam conductivity matrix in the stability conditions. 
The complex amplitude of the beam current Ib may be 
written in the form 
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where I is the average beam current, ϕ2n+α-1 is the 
equilibrium phase for the n-th pass through the resonator 
with the number α (α = 1, 2), and N is the number of 
orbits for acceleration. The small energy and phase 
deviations εn and ψn obey the linear equations: 
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i
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where ( ) ( ) 10212,12 −≤≤=+= Nnfornn αα
and ( ) ( ) 12112,22 −≤≤=+= NnNfornn αα . 

( )ndEdt / is the longitudinal dispersion of the n-th 180-

degree bend. The initial conditions for the system of Eqs. 
(13) and (14) are, certainly, ε0=0 and ψ0=0, if we have no 
special devices to control them for the sake of the beam 
stabilization, or other purposes. The solution of Eq. (13) 
and Eq. (14) may be written using the longitudinal sine-

like trajectory Snk and its “derivative” Snk
'  (elements 56 

and 66 of the transport matrix). These functions are the 
solutions of the homogenous system  

( )[ ] kn
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with the initial conditions Sk,k = 0, S'k,k = 1. Then 
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Substitution of Eq. (20) to Eq. (15) gives 
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For an ERL it needs to satisfy (at least approximately) the 
recuperation condition  
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For the longitudinal stability it also needs to have 
longitudinal focusing for most of passes through the linac 
(see Eq. (12, 13)): 

( )[ ] 0Im 0 <− neUe n
ϕ

α   (21) 

if all ( / )dt dE n > 0 ). Conditions Eq. (20) and Eq. (21) 

may be satisfied simultaneously, if ( 120 −≤≤ Nn ) 
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which leads to  
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Conditions Eq. (26) affords equality of beam energies 
after n-th and (4N-n)-th passes through a linac. 

To make the stability condition Eq. (10) more explicit, 
consider a simple example. Assume that equilibrium 
phases are equal during acceleration. In this simplest case 

( ) ( ) 202121012  arg- , arg- Φ=Φ= + eUeU nn ϕϕ  for 

10 −≤≤ Nn . Eq. (20) defines the equilibrium phases 
for deceleration. Then Eq. (19) gives 
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SIMULATIONS  
Numerical calculations were made for proposed scheme 

of ERL with two accelerating structures (the simplest 
scheme is shown in Fig. 1). Parameters of accelerating 

structures: ,10 6
21 == QQ  ,M401 Ω=ρ  

,M902 Ω=ρ  9103.12 ⋅⋅= πω Hz, 10=I mA, 

8.01 =U GV, 8.12 =U GV. Considering the magnetic 

structure with acceptable growth of the horizontal 
emittance [6, 7], one can check the stability conditions 
Eq. (11). Simulations show that there exist phase regime 
of the accelerating cavities with stability induced voltage 
and thus high threshold current. Stability condition for 

phase shift 21  Φ=Φ  between RF voltage and 

accelerating beam current is shown on Fig. 3 
(approximately from -13,5 to -8,5 degrees) in case of 
equal accelerating phase gains on the magnetic structures.  

 

Figure 3: Dependence between the max real part of 
eigenvalues matrix M (vert.) and RF phases (hor.). 

CONCLUSION  
In this paper we derived the criterion of the longitudinal 

stability for the ERL with two accelerating structures. 
Numerical calculations specify stability phase region with 
high threshold current for the accelerating cavities of 
accelerator with two linacs. 
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