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Abstract 
The Superconducting Fragment Separator (Super-FRS) 

will be built as part of the Facility of Antiproton and Ion 
Research (FAIR). For the slow-extraction part of the 
beam diagnostics system a total of 36 detectors are 
needed for the beam monitoring, tracking and 
characterization of the produced ions. GEM-TPC 
detectors are planned to be used for the diagnostics at 
slow extraction mode of the separator. The detectors will 
be placed in focal planes along the separator. Simulations 
have been made to study the effects of the detector 
materials and geometries in order minimize their 
influence to the performance of the separator. Results of 
these simulations are presented in this paper. 

INTRODUCTION 
The Super-FRS will perform in-flight separation of 

secondary ejectiles produced in fragmentation reactions 
and fission of relativistic primary beams up to uranium. 
The separator consists of two separation stages, pre and 
main, and three branches connecting different 
experimental areas [1-2]. 

The separator will be the first part of the experimental 
setup for most of the experiments located in the branches. 
The beam particles entering the different branches have to 
be identified and their momentum properties should be 
known. The beam detection system used in this task 
should have minimal interference with the beam. 

One detector type that could be used in the diagnostics 
is Time Projection Chamber with Gas Electron Multiplier 
as an amplification stage (GEM-TPC). The GEM-TPC 
detectors can have a minimal material budget on beam 
line. They can operate over wide dynamic range and can 
be used in the online identification and tracking of the 
fragments. 

The detectors will be placed on beam diagnostics 
stations in before and after the focal planes of the Main-
Separator. Layout of the Main-Separator with focal points 
marked with MF with corresponding number can be seen 
in Figure 1. Each focal point in the middle of the 
separator will be surrounded by four GEM-TPC detectors, 
two before and two after the focal point. The total number 
of GEM-TPC detectors required to occupy the detector 
spots in the diagnostics stations is 36. 

 GEM-TPC DESIGN 
The field cage of the GEM-TPC detector for the Super-

FRS diagnostics will have to cover the size of the beam 
pipe. Thus the width of the field cage has to be at least  

40 cm and the height at least 20 cm. The thickness is 
determined by the remaining space left from other 
detectors and separator components at the diagnostics 
stations. In the simulations gas volume thickness of 5 cm 
was used. 

 
Figure 1: Layout of the Main-Separator of the Super-FRS. 
The detection systems will be placed on front and back of 
each focal point marked as MF with numbering from  
1 to 9. Low energy branch has three more focal points 
outside the area of this layout. 

A prototype GEM-TPC detector was built by groups in 
Helsinki Institute of Physics and Comenius University 
Bratislava [3-4]. The detector was based on the TPC 
design developed in Bratislava for the FRS separator in 
GSI [5]. The drift space of the detector is formed by a 
high-voltage cathode and field forming Mylar strips that 
are metalized on both sides. The Mylar strips have a 
thickness of 30 µm and they are 3 mm wide. The strip 
pitch is 5 mm.  

The GEM-amplification part was constructed in the 
Detector Laboratory in Helsinki. In the first prototype, 
triple-GEM structure with 2 mm transfer and induction 
gaps was used. Picture of the first prototype GEM-TPC 
assembled in laboratory in Bratislava is shown in  
Figure 2.  

 

Figure 2: First GEM-TPC prototype assembled in 
laboratory.  

SIMULATIONS 
The beam properties throughout the separator were 

simulated using LISE++ software [6]. In the simulations 
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Figure 6: Energy loss of the fragments after traversing 
through gas volume and single Mylar structure. 

For double strip structure the effects from the strips 
begin to dominate in the energy loss distribution. Figure 7 
shows the energy loss of the fragments traversing through 
the double strip structure and the gas volume of the 
detector. A tertiary peak is introduced at 59 MeV 
broadening the full energy loss distribution. The 
secondary peak is still at 51 MeV as with single strip 
structure. 

 

Figure 7: Energy loss of the fragments after traversing 
through gas volume and double Mylar structure. 

For the polyimide wall structure a secondary peak is 
shifted to 60 MeV for 132Sn. The primary peak originating 
from the gas is clearly separable. This can be seen in 
Figure 8. 

 

Figure 8: Energy loss of the fragments after traversing 
through gas volume and polyimide with copper strips. 

CONCLUSIONS 
Effects of different GEM-TPC detector wall geometries 

to the beam properties and the detector performance have 
been studied using combination of simulation tools. From 
the simulations it can be seen that the effect of GEM-TPC 
materials to the traversing beam are small. 

 By looking at the energy loss inside the detector it can 
seen that the selections of the materials may have larger 
effect on the performance of the detector itself. The 
energy loss due to different geometries is small but all the 
materials introduce secondary peaks to the total energy 
distribution. This reduces the resolution that can be 
obtained with the detector. 
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