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Abstract 
The Diamond Light Source injector consists of a 

100 MeV Linac and 3 GeV booster synchrotron. These 
were commissioned in 2005 and 2006 respectively, and 
have provided acceptable performance as an injector since 
then. To advance a programme of work in evaluating and 
optimizing new control algorithms for orbit stability for 
Diamond it was decided to use the booster synchrotron as 
a test platform by operating it in DC mode at 100 MeV. In 
support of this work and to improve the operational 
performance of the booster a series of studies has been 
carried out to better understand and characterize it. 

THE DIAMOND BOOSTER 
The Diamond booster synchrotron is a missing dipole 

FODO lattice structure with a circumference of 158.4 m 
[1]. The booster lattice comprises 36 dipoles, two families 
of 22 quadrupoles, two families of 16 sextupoles and 22 
correctors in each plane of motion. The booster is 
designed to operate at a repetition rate of 5 Hz. During 
each cycle, beam is injected on-axis from a 100 MeV 
linac, and dipoles and quadrupoles are ramped 
sinusoidally to accelerate the beam to 3 GeV before 
extraction and transport to the Diamond storage ring. 
Sextupole currents are changed during the ramp to correct 
for induced fields and the booster RF voltage is ramped as 
the beam energy increases [2,3]. The booster and linac are 
used to fill the storage ring from empty, and, since 
October 2008, Diamond has been operating in top-up 
mode, with the booster supplying beam to the storage ring 
every 10 minutes to maintain a constant storage ring 
current for users [4]. Vacuum pressure in the booster is 
maintained in the mid-10-10 mbar range without beam. 

STORED BEAM IN THE BOOSTER 
Initial efforts to store beam in the booster by simply 

turning off all magnet and RF ramps and maintaining 
100 MeV injection optics resulted in a beam lifetime of 
less than one second, necessitating a “kick-out and 
replace” approach to maintain beam current. A better 
working point was established by scanning the currents in 
the two quadrupole families and measuring the beam 
current integrated over 200 ms with all other parameters 
kept constant. Results are shown in Figure 1, with red 
indicating high integrated current and blue low. The upper 
plot is integrated current against quadrupole currents and 
the lower plot is integrated current presented as a function 
of fractional tune measured by a stripline BPM. 
Decreasing tune with increasing quadrupole current 
indicated tunes above the half-integer. 

 

 
Figure 1: Integrated booster current as a function of 
quadrupole current (above) and betatron tune (below). 

Betatron resonances up to third order are immediately 
obvious, as are multiple possible working points. One 
particularly attractive region is near Qx = 0.6, Qy = 0.6, 
although the Qx = Qy resonance is present but faint and 
must be avoided. Optimisation of sextupole currents and 
injection magnets at this working point enabled beam to 
be stored in the booster with exponential decay lifetimes 
of several minutes. Figure 2 shows the decay of a train of 
120 bunches stored in the booster. Similar currents are 
possible with single bunch operation, although initial tests 
indicate a much shorter lifetime. 
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