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Abstract

The statistical relationship of the autocorrelation
function and spectrum of a train of quasi-periodic
sequence of pulses having a time jitter of the repetition
rate is  obtained.Presented the accordance of
autocorrelation function as well as power spectrum of the
bounded quasi-periodic sequence of pulses and timing
jitter of their repetition rate. The results can be used at the
measurements of timing jitter of a train of electron
bunches.

PROBLEM STATEMENT

Let's consider a bounded quasi-periodic sequence x(z)
consisting of (N+/) rectangular pulses following each

other at intervals T, £ |ATI| (Fig.1).
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Figure 1: A train of (N+/) quasi-periodic sequence of

pulses (AT; # 0).

At AT; =0 =0 we will have a bounded strongly
periodic sequence of (N+1) pulses. Let's assume that the
amplitude and width of pulses as well as the length of the
train (ATO = ATN = 0) are constant, therefore the energy
and power of train will be the same at any AT;. Suppose,
in particular, N=30, TO = 1000 psec , T =5 psec.

Let's now consider how a timing jitter affects the
autocorrelation function and power spectrum of the train
(Figs. 2-4). For that we will specify the random deviation
from strict periodicity, using the generators of the discrete
random numbers with uniform distribution in intervals:

a) AT;=0 + |l| psec with step 0.1 psec,
b) AT;=0 + |1 O| psecwithstep 1 psec,
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where |A|] means a setof discreterandom numbers
l-A, -(A-1),...,-1,0, 1, ..., (A-1), A|.
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Figure 2a: Autocorrelation function at AT; = 0
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Figure 2b: Power spectrum at AT; = 0

AUTOCORRELATION FUNCTION (AF)

Let’s recall some main properties of an autocorrelation
function  (4AF). Autocorrelationof a  random
processdescribes the correlationbetween the valuesof the
processat different points intime.For a discreteprocessof
length n (X;, X,..,X,) with knownexpectationand
dispersionthe autocorrelationcan be calculated bythe
following formula:
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for any positiveintegers kand ».

1.0
= Jitter = -1, 0, 1 pzec
LR
E 00 fi-
B o4l
E
H” “\
0.0 I||||| I | ! I |“||I .
40 -0 ] 0 40
Lag in nsac, (step 0.1 psed)
Figure: 3a. Autocorrelation function at
AT; = |1]| psec
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Figure 3b: Power spectrum at AT; = |1| psec

The fundamental property of autocorrelation
function is its symmetry; the value of AF at 0 is
proportional to the energy of the signal. Autocorrelation
function reaches its maximum at 0 and [R(7)| < R(0)
The Wiener-Khinchin theorem relates the autocorrelation
function to the power spectral density via the Fourier
transform:
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S(f) = fR(‘r)exp(—ian‘r)dT
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Since the energy of the train at any AT; is the same,
the ratio of the ordinates' sum (or area) at AT; # 0 to
ordinates’ sum (or area) at AT; = Oin the range of
correlation will uniquely determine the AT;
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Figure 4a: Autocorrelation function at AT; = |10| psec
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Figure 4b: Power spectrum at AT; = |10| psec

POWER SPECTRUM (PS)

Figs. 2b-4b shows that the timing jitter leads to a
redistribution of energy over the spectrum. Thus, the ratio
of energy in the main maximum to the total energy across
the spectrum, as well as the cut-off frequency at half-
height contains information about the jitter.
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Figure 5: The ratio of ordinate’s sum (area) at AT; # 0
and AT; =0
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Figure 6: The ratio of energy in the main maximum at
half-height / total energy across the spectrum
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Figure 7: The spectrum width at half-height of the
envelope of the main maximum

Thepresented results allow applying well-developed
technique of spectral and correlation analysis [1-3] to
detecttimingjitter of quasi-periodic bounded sequence of
electron bunches.
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