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Abstract 
The statistical relationship of the autocorrelation 

function and spectrum of a train of quasi-periodic 
sequence of pulses having a time jitter of the repetition 
rate is obtained.Presented the accordance of 
autocorrelation function as well as power spectrum of the 
bounded quasi-periodic sequence of pulses and timing 
jitter of their repetition rate. The results can be used at the 
measurements of timing jitter of a train of electron 
bunches. 

 

 

PROBLEM STATEMENT 
Let's consider a bounded quasi-periodic sequence x(t) 

consisting of (N+1) rectangular pulses following each 

other at intervals T0 iT  (Fig.1). 

 

 

Figure 1:  A train of (N+1) quasi-periodic sequence of 

pulses ( iT 0 ). 

 
At ∆ ௜ܶ = 0 =0 we will have a bounded strongly 

periodic sequence of (N+1) pulses. Let's assume that the 
amplitude and width of pulses as well as the length of the 
train (ΔТ0 = ΔТN = 0) are constant, therefore the energy 
and power of train will be the same at any ∆ ௜ܶ. Suppose, 
in particular, N=30, Т0 = 1000 psec , τ = 5 psec.  

Let's now consider how a timing jitter affects the 
autocorrelation function and power spectrum of the train 
(Figs. 2-4). For that we will specify the random deviation 
from strict periodicity, using the generators of the discrete 
random numbers with uniform distribution in intervals: 

 

a) iT = 0 1 psec with step 0.1 psec, 

b) iT = 0 10 psecwithstep 1 psec, 

where |А|  means a setof discreterandom numbers               
|-А, -(А-1), ..., -1, 0, 1, ..., (А-1), А|.  

 

 

Figure 2a: Autocorrelation function at ∆ ௜ܶ = 0 

Figure 2b: Power spectrum  at ∆ ௜ܶ = 0 

 

AUTOCORRELATION FUNCTION (AF) 
 

Let’s recall some main properties of an autocorrelation 
function (AF).  Autocorrelationof a random 
processdescribes the correlationbetween the valuesof the 
processat different points intime.For a discreteprocessof 
length n (X1, X2,…,Xn) with knownexpectationand 
dispersionthe autocorrelationcan be calculated bythe 
following formula:  

 ___________________________________________  
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෠ܴ(݇) = 1(݊ − ଶ෍ሾܺ௧ߪ(݇ − ሿሾܺ௧ା௞ߤ − ሿ௡ି௞ߤ
௧ୀଵ  

for any positiveintegers kand n. 

 
 
The fundamental property of autocorrelation 

function is its symmetry; the value of AF at 0 is 
proportional to the energy of the signal. Autocorrelation 
function reaches its maximum at 0 and |ܴ(߬)| ≤ ܴ(0)	 
The Wiener-Khinchin theorem relates the autocorrelation 
function to the power spectral density via the Fourier 
transform: ܴ(߬) = න ܵ(݂) exp(݅2݂߬ߨ) ݂݀;	ஶ

ିஶ 	
ܵ(݂) = න ܴ(߬) exp(−݅2݂߬ߨ) ݀߬ஶ

ିஶ  

 
Since the energy of the train at any ߂ ௜ܶ is the same, 

the ratio of the ordinates' sum (or area) at ∆ ௜ܶ ≠ 0 to 
ordinates’ sum (or area) at ∆ ௜ܶ = 0in the range of 
correlation will uniquely determine the ∆ ௜ܶ 

 

POWER SPECTRUM (PS) 
 Figs. 2b-4b shows that the timing jitter leads to a 

redistribution of energy over the spectrum. Thus, the ratio 
of energy in the main maximum to the total energy across 
the spectrum, as well as the cut-off frequency at half-
height contains information about the jitter.  
 

 

Figure 5: The ratio of ordinate’s sum (area) at ∆ ௜ܶ ≠ 0 
and ∆ ௜ܶ = 0 

 

Figure: 3a. Autocorrelation function at 
 ∆ ௜ܶ =  ܿ݁ݏ݌	|1|

 

Figure 3b: Power spectrum at ∆ ௜ܶ =  ܿ݁ݏ݌	|1|

 

Figure 4a: Autocorrelation function at  ∆ ௜ܶ = |10|  ܿ݁ݏ݌

 

Figure 4b: Power spectrum at  ∆ ௜ܶ = |10|  ܿ݁ݏ݌
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Figure 6: The ratio of energy in the main maximum at 
half-height / total energy across the spectrum 

 
 
 

 

Figure 7: The spectrum width at half-height of the 
envelope of the main maximum 

 
Thepresented results allow applying well-developed 

technique of spectral and correlation analysis [1-3] to 
detecttimingjitter of quasi-periodic bounded sequence of 
electron bunches. 
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