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Abstract

Bursting of coherent synchrotron radiation has been ob-
served and in fact used to generate THz radiation in many
electron storage rings. In order to understand and control
the bursting, we return to the study of the microwave in-
stability. In this paper, we will report on the theoretical
understanding, including recent developments, of the mi-
crowave instability in electron storage rings. The histori-
cal progress of the theories will be surveyed, starting from
the dispersion relation of coasting beams, to the work of
Sacherer on a bunched beam, and ending with the Oide and
Yokoya method of discretization. This theoretical survey
will be supplemented with key experimental results over
the years. Finally, we will describe the recent theoretical
development of utilizing the Laguerre polynomials in the
presence of potential-well distortion. This self-consistent
method will be applied to study the microwave instability
driven the impedances due to the coherent synchrotron ra-
diation.

INTRODUCTION

Over the past quarter century, there has been steady
progress toward smaller transverse emittances in electron
storage rings used for synchrotron light sources, from tens
of nm decades ago to the nm range recently. In contrast,
there is not much progress made in the longitudinal plane.
For an electron bunch in a typical ring, its relative energy
spreadσδ remains about10−3 and its lengthσz is still in
between 5 mm to 10 mm. Now the longitudinal emittance
(σδσz) becomes a factor of thousand larger than those in
the transverse dimensions. In this paper, we will address
questions of: How short a bunch can be? What is the fun-
damental limit? If there is a limit, is there any mitigation
method? Since the synchrotron radiation is so fundamen-
tal in electron storage rings, let us start with the coherent
synchrotron radiation (CSR).

COASTING BEAM THEORY

If one studies a perturbationΨ1 = Ψ(δ)e−iΩs/c+ikz for
an electron beam with an energy ofE0 = γmc2, a current
I, and a Gaussian distribution with a relative energy spread
σδ, one can derive (for example see[1])

1 = i
cI

αγσ2
δIA

(
Ẑ(k)

k
)

∫ ∞

−∞

dF0/dp

p− a
dp, (1)
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based on the linearized Vlasov equation of coasting beam.
Here IA = mc3/e = 17045 A is the Alfven current,
α the momentum compaction factor,Ẑ(k) the impedance
per unit length, andF0 = e−p2/2/

√
2π. In general,

a = Ω/αckσδ, is a complex number and is to be solved
for a given value ofk. One can see that there is a pole on
the real axis in the integral in Eq. (1). The correct treatment
of the pole leads to the Landau damping. Actually, one can
first evaluate the integral in the upper half plane and then
analytically continue it into the lower half plane. The result
of the integral is given by

G(a) = −1 +

√

π

2
ae−a2/2(erfi(

a√
2
)− i). (2)

It is easy to see from the perturbation that the beam is un-
stable ifIm[Ω] > 0.

CSR Impedance in Free Space

For electrons, orbiting on a circle with radiusρ inside
bending magnets, the longitudinal wakefield due to the
steady CSR in free space was given by Murphy, Krinsky,
and Gluckstern[2]

Wcsr(z) = − 4πρ1/3

(3z)4/3
, (3)

for z > 0 and the wake vanishes whenz < 0. Unlike a
conventional wake, the CSR force is acting on the electron
ahead. Its corresponding impedance was actually found by
Faltens and Laslett[3]

Zcsr(k) = (
2π

c
)
Γ(2/3)(

√
3 + i)

31/3
(ρk)1/3, (4)

whereΓ is the Gamma function.

Microbunching

Using Ẑcsr(k) = Zcrs(k)/2πρ, Stupakov and
Heifets[1] analyzed the dispersion relation of Eq. (1) and
showed that the beam becomes unstable if

kρ < 2.0Λ3/2, (5)

whereΛ = I/αγσ2
δIA. In this model, given a current,

there is always an unstable mode when its wave numberk
is low enough.

This stability condition was confirmed[4] experimen-
tally at the Advanced Light Source, where the evidence of
microbunching in the bolometer signal was found when the
bunch current

Ib >
π1/6αγσ2

δIAσz√
2ρ1/3λ2/3

, (6)
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for the wavelengths atλ = 2 mm andλ = 3.2 mm at var-
ious beam energies. This expression can be derived from
Eq. (5) provided,

I =
√
2πρIb/σz , (7)

which is a result of identifying the peak current of the
bunched beam withI.

CSR Impedance with Shielding

The calculation of the exact impedance with the shield-
ing from two parallel metal plates, separated by a dis-
tance h, was carried out by Warnock[5] in terms of
the Bessel functions. Utilizing the uniform asymptotic
expansion[6] of the Bessel functions, one can approximate
the impedance with the Airy functions Ai and Bi,

(
ρ

h
)(
Z(n)

n
)csr p =

16π321/3

c
[n(

h

ρ
)3/2]−4/3

×
∑

p>=1,3,...

[Ai′(u)Ci′(u) + uAi(u)Ci(u)], (8)

wheren = kρ, Ci = Ai − iBi, andu is defined as

u =
π2p2

22/3
[n(

h

ρ
)3/2]−4/3. (9)

Note that the dependency ofn on the left side of the equa-
tion is all throughn(h/ρ)3/2. This kind of scaling law was
proposed as an approximated property by Murphy, Krinsky,
and Gluckstern[2]. In fact, one can show that Eq. (8), gives
the impedance that corresponds to their wakefield, which
was used in our recent simulations[7].
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Figure 1: Scaled Z(n)/n for the CSR impedances in parallel
plates and in free space.

Moreover, the same scaling property holds for the CSR
impedance in free space as well; formally Eq. (4) can be
rewritten as,

(
ρ

h
)(
Z(n)

n
)csr = (

2π

c
)
Γ(2/3)(

√
3 + i)

31/3

×[n(
h

ρ
)3/2]−2/3. (10)

The scaled impedances written in Eqs. (8) and (10) are
plotted in Fig 1. As one can see in the figure, for the parallel
plate model, its real part becomes zero nearkh3/2/ρ1/2 =
2 at the low end of frequency. Clearly, there is a strong
shielding effect at the long wavelength by the metal plates.
At the end of short wavelength, its impedance is asymptot-
ically approaching the impedance in free space as it should
be.

Stability Analysis with Shielding

Using the impedance defined in Eq. (8), we analyzed the
dispersion relation of Eq. (1) for various values of a scaled
current,S = Ih/αγσ2

δIAρ, as shown in Fig. 2. The disper-
sion curves clearly show the shielding effect at the low end
of kh3/2/ρ1/2. As one can see, the beam is stable for all
values of the wave number whenS < 6/π. The threshold
of the instability occurs at the current ofSth = 6/π with

kth = 5.7ρ1/2/h3/2. (11)

Above the threshold, the lowest unstable wave number is
also proportional toρ1/2/h3/2; However, its coefficient
varies as a function of the current and is not a fixed value
as suggested in many previous publications.
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Figure 2: Scaled imaginary part of the dispersion curves
with three values of the scaled currentS = 1, 6/π, 3 in the
color of blue, black, and red respectively.

To compare the theory with the observations, we need to
use Eq. (7) to rewrite the instability condition,S > 6/π, in
terms of the bunch current,

Ib >
3
√
2αγσ2

δIAσz

π3/2h
. (12)

Note that the threshold does not depend onρ.

Table 1: Measurements in the NSLS VUV Ring

Parameter Measurement Theory

Threshold wavelength,λth 7.0 mm 6.9 mm
Threshold current,Ithb 100 mA 134 mA

A comparison of the theory, using Eqs. (11) and (12),
with the observation[8] in the VUV ring of the National
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Synchrotron Light Sources at BNL is presented in Table 1.
As one can see, the agreement in the wavelength of the un-
stable mode is excellent. The calculated threshold is 30%
higher than the measured value.

BUNCHED BEAM THEORY

In a storage ring, electrons inside a bunched beam ex-
ecute synchrotron oscillation at frequencyfs = νsfrev,
wherefrev is the revolution frequency. The synchrotron
tuneνs is given by

νs =

√

αfrf
2πfrev

(
eVrf

E0
) cosφs, (13)

wherefrf is the RF frequency. The RF voltageVrf is nec-
essary to compensate the energy lossU0 due to the syn-
chrotron radiation in every turn of the circulation, namely
U0 = eVrf sinφs. The equilibrium bunch distribution is a
Gaussian. The bunch length is given by[9]

σz = αcσδ/ωs, (14)

whereωs = 2πfs.
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Figure 3: Haissinski distributions at various scaled cur-
rents,ξ = 0.1, 0.3, 0.5, for the CSR in free space. The
head of the bunch is to the right.

When there are longitudinal wakefields in the storage
ring, the equilibrium becomes a Haissinski distribution[10]
at a sufficiently low bunch current. For the wakefield driven
by the CSR in free space in Eq. (3), the Haissinski dis-
tributions are shown in Fig. 3. To study the stability at
a higher current, one can make a small perturbation near
the Haissinski distribution and then analyze the linearized
Vlasov equation for the perturbation. This leads to an set
of integral equations[11, 12].

Sacherer Integral Equation

For all azimuthal mode numberl = −∞, ...∞, we have
the integral equation

(
Ω

ωs
− l

ω(K)

ωs
)Pl(K) =

∞
∑

m=−∞

∫ ∞

0

dK ′Gl,m(K,K ′)Pm(K ′). (15)

Its kernel is given by

Gl,m(K,K ′) =
−
√
2lInce

−(K+Vmin)

√
πκσz

×Im[

∫ ∞

0

dν
Z(ν/σz)

ν
hl(ν,K)h∗

m(ν,K ′)], (16)

where

hl(ν,K) =

∫ 2π

0

dφ

2π
e−ilφ+iνq(φ,K). (17)

Here we have the normalized current

In =
reNb

2πνsγσδ
, (18)

wherere = e2/mc2 is the classic radius of electron and
Nb the bunch population. It can be rewritten in terms of the
bunch currentIb,

In =
σzIb

αγσ2
δIA

, (19)

using Eq. (14).κ, Vmin, ω(K), andq(φ,K) can be deter-
mined by the underling Haissinski distribution. Since the
Haissinski solution is a function of the current, they depend
on In as well.

Given a currentIn, one needs to solvePl(K) for all l
along withΩ. WhenIm[Ω] > 0, the beam is unstable. One
method to solve the integral equations is to discretize[11]
the variableK. Here we will present an alternative.

Polynomial Expansion

Using the generalized Laguerre polynomialsL
|l|
α (K),

we decompose

Pl(K) = e−K
∞
∑

α=0

aαl f
(l)
α (K), (20)

where

f (l)
α (K) =

√

α!

(|l|+ α)!
K |l|/2L|l|

α (K). (21)

Applying the orthogonal and normal condition of the La-
guerre polynomials, we reduce the Sacherer integral equa-
tions to a set of linear equations,

Ω

ωs
alα =

∞
∑

m=−∞

∞
∑

β=0

Mα,β
l,m amβ , (22)

for l = −∞, ...∞ andα = 0, ...∞.
Clearly, it becomes an eigen value problem.Ω/ωs is the

eigen value. In fact, M is a real matrix. When the current
is small, all eigen values are real and therefore the beam is
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stable. It becomes unstable, when the first pair of complex
value emerges as the current increases.

The matrix elements are given by

Mαβ
lm = l(δlmOαβ

(l) − Cαβ
lm ) (23)

and

Oαβ
(l) =

∫ ∞

0

dK
ω(K)

ωs
e−Kf (l)

α (K)f
(l)
β (K), (24)

Cαβ
lm =

√
2Ince

−Vmin

√
πκσz

×Im[

∫ ∞

0

dν
Z(ν/σz)

ν
gαl (ν)g

β
m

∗
(ν)], (25)

where

gαl (ν) =

∫ ∞

0

dKe−Kf (l)
α (K)hl(ν,K). (26)

Now, the problem of analyzing the instability of bunched
beam is reduced to first evaluating the integrals in Eqs. (17),
(26), (24), and (25), and then finding the eigen values and
eigen vectors of the matrix M.

Instability Driven by the CSR in Free Space

For the impedance given by Eq. (4), a complete analysis
of the stability of the Haissinski distribution as a function
of the current was carried out[12]. As shown in Fig 4, the
threshold of the instability is atξth = 0.482.
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Figure 4: Imaginary part of the eigen values forΩ/ωs as

a function of the scaled current,ξ = Inρ
1/3/σ

4/3
z , for the

impedance driven by the CSR in free space.

Threshold of the CSR Instability with Shielding

Similar analysis is carried out using the impedance de-
fined in Eq (8). Because of the additional parameterh
and the scaling property in the impedance formula, the
threshold becomes a function of the shielding parameter,
χ = σzρ

1/2/h3/2, as shown in Fig. 5 as the green stars.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

χ=σ
z
ρ1/2/h3/2

ξ 
=

 I nρ1/
3 /σ

z4/
3

 

 

VFP simulation
Bunched beam theory
Coasting beam theory

Figure 5: Thresholdξth as a function of the shield-
ing parameterχ. The circles are the result of the VFP
simulation[7].

The solid line in the figure is plotted using the formula,
ξ = 3

√
2χ2/3/π3/2. It can be derived from the coast-

ing beam threshold in Eq. (12) using the definitions ofξ
andχ and Eq. (19). Clearly, the agreement between the
simulation and the coasting beam theory is excellent when
χ > 2. Finally, the bunched beam theory confirms the dip
atχ = 0.25, seen first in the simulation.

Finally, for the theoreticalξth, one may simplify the re-
sult in the figure to

ξth(χ) = 0.5 + 0.34χ, (27)

except the dip atχ = 0.25. This linear relation was first
obtained by fitting to the result of the VFP simulation[7].

COMPARISON TO THE
MEASUREMENTS

Although the bursting phenomenon at THz was observed
under various momentum compaction factors, RF voltages,
bunch lengths, and energies in many synchrotron light
sources, its threshold currentIthb satisfies a simple scaling
law[13] with respect to the bunch lengthσz (in MKS units),

σ7/3
z =

c2Z0

2πF31/3
Ithb ρ1/3/(Vrffrffrev), (28)

whereF is a constant. Note thatσz is the bunch length at
zero current not at the threshold current. This scaling prop-
erty with F = 7.456 was derived[14] based on the coast-
ing beam theory developed by Stupakov and Heifets[1]. It
agrees very well with the BESSY II measurement[15].

A similar equation can be derived easily from the
bunched beam theory. Starting fromξ = Inρ

1/3/σ
4/3
z and

using Eqs. (19), (14), and (13), we obtain (in MKS units)

σ7/3
z =

c2Z0

8π2ξ
Ibρ

1/3/(Vrf cosφsfrffrev). (29)

Here we have usedZ0 = 4π/c to change from CGS units to
MKS units. So far, this is merely a general relation between
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the scaled currentξ and the bunch currentIb. In particular,
applying it to the threshold, we have (in MKS units)

σ7/3
z =

c2Z0

8π2ξth(χ)
Ithb ρ1/3/(Vrf cosφsfrffrev), (30)

whereξth(χ) is given by Eq. (27), ignoring the dip.
For very short bunches, the shielding parameter is so

small that one can useξth = 0.5 in Eq. (30) to make
a comparison with the threshold measurement. Such a
measurement[16] was carried out at different momentum
compaction factors with the same RF voltage at ANKA.
The result is shown in Fig. 6. As one can see, the agree-
ment between the theory and the measurement is excellent.
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Figure 6: (courtesy of M. Klein) Measured bursting thresh-
old as as function ofσz at ANKA. ξth = 0.5 in Eq. (30) is
used for the solid curve.

In most storage rings,cosφs is nearly equal to 1. As a
result, Eqs. (28) and (30) are almost identical provided

F = 4πξth(χ)/31/3. (31)

In contrast to the coasting beam theory,F is not a constant
but rather a function of the shielding parameterχ. Indeed,
there is some experimental evidence shown in Table 2 to
support this claim.

Table 2: Comparison of Theory with Measurements at Var-
ious Synchrotron Light Sources

Machine F (meas.) F (theory) χ

BESSY II 7.46 5.84 0.48
MLS 3.40 5.23 0.29
ANKA 4.36 5.58 0.42
Diamond 2.90 1.48 0.25

In the table, the measured values ofF were provided
by Wustefeld for BESSY II and MLS, Klein for ANKA,
and Martin for Diamond. The theoretical values are cal-
culated using Eqs. (31) and (27), except for the Diamond
Light Source, for whichξ = 0.17 is used for the dip. More-
over, the measurements at Diamond were carried out with
the negative momentum compaction factors. Therefore, for
that one, its threshold has to be recalculated. As one can

see, the agreement is not perfect but reasonably good con-
sidering that only the CSR impedance is included in the
theory.

CONCLUSION

For a long bunch,χ = σzρ
1/2/h3/2 > 2, the coast-

ing beam theory with the shielding impedance works well.
Eq. (12) should be used for estimating the threshold.

When a bunch is short,χ < 2, the bunched beam the-
ory should be applied. According to Eq. (30), the beam
becomes unstable if

Ib >
8π2ξth(χ)σ

7/3
z Vrf cosφsfrffrev
c2Z0ρ1/3

. (32)

A shorter bunch is always more unstable. However, it is
much better to reduce the bunch length with an increase in
RF voltage than with a decrease of the momentum com-
paction factor.
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