WEOAB —  Linear Colliders   (07-Sep-11   09:30—10:30)
Chair: L. Merminga, TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
Paper Title Page
WEOAB01 Highly Polarized and High Quantum Efficiency Electron Source Using Transmission-type Photocathode 1950
 
  • N. Yamamoto, F. Ichihashi, A. Mano, T. Nakanishi, Y. Takeda, T. Ujihara
    Nagoya University, Nagoya, Japan
  • X.G. Jin
    Institute for Advanced Research, Nagoya, Japan
 
  The GaAs-type semiconductor photocathodes (PCs) with a negative electron affinity surface have been used as a polarized electron source and are expected as electron sources for next generation accelerators, such as Linear Colliders and Energy Recovery Linacs. Recently, we have developed transmission-type photocathodes (T-PCs). By using T-PCs, polarized electron beam is extracted from the back-side of laser irradiation-side. This scheme offers great merits in designing electron guns, such as short focusing of the laser light for a high brilliance electron beam and a simple geometrical structure avoiding an interference problem between the laser and the electron beam. The layer structure of the MOVPE-grown superlattice photocathode and the performance of 90% polarization, a super high brilliance, and a high quantum efficiency will be reported.  
slides icon Slides WEOAB01 [6.007 MB]  
 
WEOAB02 FACET: The New User Facility at SLAC 1953
 
  • C.I. Clarke, F.-J. Decker, R.A. Erickson, C. Hast, M.J. Hogan, R.H. Iverson, S.Z. Li, Y. Nosochkov, N. Phinney, J. Sheppard, U. Wienands, W. Wittmer, M. Woodley, G. Yocky
    SLAC, Menlo Park, California, USA
  • A. Seryi
    JAI, Oxford, United Kingdom
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 um. A final focusing system can produce beam spots 10um wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments.
 
slides icon Slides WEOAB02 [4.772 MB]  
 
WEOAB03 The Production of High Quality Electron Beams in the ALPHA-X Laser Wakefield Accelerator 1956
 
  • S.M. Wiggins, M.P. Anania, C. Aniculaesei, E. Brunetti, S. Cipiccia, B. Ersfeld, M.R. Islam, R.C. Issac, D.A. Jaroszynski, G.G. Manahan, R.P. Shanks, G.H. Welsh
    USTRAT/SUPA, Glasgow, United Kingdom
  • W.A. Gillespie
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • A. MacLeod
    UAD, Dundee, United Kingdom
 
  Funding: The U.K. EPSRC, the EC's Seventh Framework Programme (LASERLAB-EUROPE / LAPTECH, grant agreement no. 228334) and the Extreme Light Infrastructure (ELI) project.
The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laser-plasma accelerators for the production of ultra-short electron beams as drivers of incoherent and coherent radiation sources from plasma and magnetic undulators. Here we report on the latest laser wakefield accelerator experiments on the University of Strathclyde ALPHA-X accelerator beam line looking at high quality electron beams. ALPHA-X uses a 26 TW Ti:sapphire laser (energy 900 mJ, duration 35 fs) focused into a helium gas jet (nozzle length 2 mm) to generate high quality monoenergetic electron beams with central energy in the range 80-180 MeV. The beam is fully characterized in terms of the charge, bunch length, energy spread and transverse emittance. The energy spectrum (with less than 1% measured energy spread) is obtained using a high resolution magnetic dipole imaging spectrometer while pepper-pot mask measurements show that the normalized transverse emittance is as low as 1.1 pi mm mrad (resolution limited). The conditions needed to obtain this high quality are discussed.
 
slides icon Slides WEOAB03 [2.904 MB]