08 Applications of Accelerators, Technology Transfer and Industrial Relations
T29 Industrial Collaboration
Paper Title Page
WEIB03 Emerging New Electronics Standards for Physics 1981
 
  • R.S. Larsen
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US Department of Energy Contract DE AC03 76SF00515.
A unique effort is underway between industry and the international physics community to extend the Telecom industry’s Advanced Telecommunications Computing Architecture (ATCA and MicroTCA) to meet future needs of the physics machine and detector community. New standard extensions for physics are being designed to deliver unprecedented performance and high subsystem availability for accelerator controls, instrumentation and data acquisition. A key feature is a unique out-of-band imbedded standard Intelligent Platform Management Interface (IPMI) system to manage hot-swap module replacement and hardware-software failover. An additional goal is to achieve a much higher degree of interoperability of both lab and industry designed hardware-software products than past generations of standards. This presentation will describe status of the hardware-software standards extension plans; technology advantages for machine controls and data acquisition systems; and examples of collaborative efforts to help develop an industry base of generic ATCA and MicroTCA products in an open-source environment.
 
slides icon Slides WEIB03 [3.905 MB]  
 
WEIB05 Collaborative R&D in the Industry of Science 1991
 
  • C. Oyon
    ESS, Lund, Sweden
 
  Successful collaborative efforts involve committed partners that have established comforting level of trust. When industry and research laboratories establish such collaborations they create unique ecosystems that have potential to deliver creative solutions. Many times, however, those collaborations face unexpected legal and administrative limitations. The aim of this talk is to identify key limitations and suggest potential solutions that can streamline collaborative projects.  
slides icon Slides WEIB05 [6.937 MB]  
 
THPS064 Application of X-band 3.95 MeV Linac X-ray Source for On-site Bridge Inspection 3571
 
  • H.F. Jin, K. Demachi, K. Dobashi, T. Fujiwara, M. Uesaka, H. Zhu
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
 
  We developed an X-ray non-destructive (NDT) system for on-site bridge inspection. A portable X-band (9.3-12 GHz) 3.95MeV linear accelerator (linac) has been developed for this system. The system consists of X-ray of 62kg without the target collimeter of 80kg, the RF power source of 62kg and other utility box of 116kg. For the onsite investigation, a flexible waveguide is used for this linac. And the linac is a point X-ray source. For X-ray detection, we chose 8-inch square size scintillation type flat panel detector. The spatial resolution of the detector is as high as 0.2mm, which is manufactured by Perkin Elmer Co. Cd2O2S:Tb is used for the scintillator crystal. The capable radiation energy range is 40keV to 15MeV. In order to realize quick inspection for a bridge, remote control robot which handles and compact X-ray source and detector are desired. Therefore, we developed 3D location system for this robot. The locating system is realized with image processing with its camera. For the operation, stereoscopic radiographic image is taken and analyzed, and computed tomography (CT) image analysis is taken for detailed inspection.
Non-destructive test (NDT) , X-ray Source, X-band, Linac, Detector, Computed Tomography (CT).
 
 
THPS065 Upgraded X-band 950 KeV Linac X-ray Source for On-site Inspection at Petrochemical Complex 3574
 
  • M. Jin, K. Demachi, K. Dobashi, H.F. Jin, T. Natsui, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken, Japan
  • J. Kusano, N. Nakamura, M. Yamamoto
    Accuthera Inc., Kawasaki, Kanagawa, Japan
  • E. Tanabe
    AET, Kawasaki-City, Japan
 
  Abstract―Our portable X-band (9.3GHz) 950KeV linac has been successfully upgraded. The problems of RF power oscillation, beam current oscillation and reduction and finally lack of X-ray intensity were solved by replacing the axial coupling cavities with the side-coupled ones. Designed X-ray dose rate of 0.05 Sv/min@1m is going to be achieved. Length of the accelerating tube is reduced to less than 25 cm. X-ray source part with the local radiation shielding is connected by the flexible waveguide with the box of the 300 kW magnetron and cooling unit. The total system consists of the three suit-case-size units, the last of which is one for the electric power supply. Even on-line dynamic transmission imaging is available by using the high intensity X-ray camera. Demonstration of the measurement of wall thinning of metal pipes with thick thermal shielding is under way. Updated measurement results will be presented. KEYWORDS: portable X-band linac X-ray source, on-site high energy X-ray inspection, petrochemical complex